首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study is to experimentally analyse the performance and the pollutant emissions of a four-stroke SI engine operating on ethanol–gasoline blends of 0%, 5%, 10%, 15% and 20% with the aid of artificial neural network (ANN). The properties of bioethanol were measured based on American Society for Testing and Materials (ASTM) standards. The experimental results revealed that using ethanol–gasoline blended fuels increased the power and torque output of the engine marginally. For ethanol blends it was found that the brake specific fuel consumption (bsfc) was decreased while the brake thermal efficiency (ηb.th.) and the volumetric efficiency (ηv) were increased. The concentration of CO and HC emissions in the exhaust pipe were measured and found to be decreased when ethanol blends were introduced. This was due to the high oxygen percentage in the ethanol. In contrast, the concentration of CO2 and NOx was found to be increased when ethanol is introduced. An ANN model was developed to predict a correlation between brake power, torque, brake specific fuel consumption, brake thermal efficiency, volumetric efficiency and emission components using different gasoline–ethanol blends and speeds as inputs data. About 70% of the total experimental data were used for training purposes, while the 30% were used for testing. A standard Back-Propagation algorithm for the engine was used in this model. A multi layer perception network (MLP) was used for nonlinear mapping between the input and the output parameters. It was observed that the ANN model can predict engine performance and exhaust emissions with correlation coefficient (R) in the range of 0.97–1. Mean relative errors (MRE) values were in the range of 0.46–5.57%, while root mean square errors (RMSE) were found to be very low. This study demonstrates that ANN approach can be used to accurately predict the SI engine performance and emissions.  相似文献   

2.
Renewable energy sources for the gasoline engines alcohols gain importance recently. These renewable energy sources have attracted the attention of researchers as alternative fuel due to their high octane number. In addition, these are also clean energy sources and can be obtained from the biomass alcohols with low carbon like ethanol. In this study, the effect of compression ratio on engine performance and exhaust emissions was examined at stoichiometric air/fuel ratio, full load and minimum advanced timing for the best torque MBT in a single cylinder, four stroke, with variable compression ratio and spark ignition engine.  相似文献   

3.
To meet stringent vehicular exhaust emission norms worldwide, several exhaust pre-treatment and post-treatment techniques have been employed in modern engines. Exhaust Gas Recirculation (EGR) is a pre-treatment technique, which is being used widely to reduce and control the oxides of nitrogen (NOx) emission from diesel engines. EGR controls the NOx because it lowers oxygen concentration and flame temperature of the working fluid in the combustion chamber. However, the use of EGR leads to a trade-off in terms of soot emissions. Higher soot generated by EGR leads to long-term usage problems inside the engines such as higher carbon deposits, lubricating oil degradation and enhanced engine wear. Present experimental study has been carried out to investigate the effect of EGR on soot deposits, and wear of vital engine parts, especially piston rings, apart from performance and emissions in a two cylinder, air cooled, constant speed direct injection diesel engine, which is typically used in agricultural farm machinery and decentralized captive power generation. Such engines are normally not operated with EGR. The experiments were carried out to experimentally evaluate the performance and emissions for different EGR rates of the engine. Emissions of hydrocarbons (HC), NOx, carbon monoxide (CO), exhaust gas temperature, and smoke opacity of the exhaust gas etc. were measured. Performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC) were calculated. Reduction in NOx and exhaust gas temperature were observed but emissions of particulate matter (PM), HC, and CO were found to have increased with usage of EGR. The engine was operated for 96 h in normal running conditions and the deposits on vital engine parts were assessed. The engine was again operated for 96 h with EGR and similar observations were recorded. Higher carbon deposits were observed on the engine parts operating with EGR. Higher wear of piston rings was also observed for engine operated with EGR.  相似文献   

4.
The aim of this study is to obtain alternative fuels with hydrogen-containing (NaBH4) and oxygen-containing (ethanol, methanol) fuel additives and to test these fuels in a gasoline engine. For this purpose, each of the NaBH4 added ethanol and methanol solutions was added to pure gasoline at a volume of 10% and mixed fuels named SE10 and SM10 were obtained, respectively. The obtained SE10 and SM10 mixed fuels were tested in a spark ignition engine and the performance and emission effects of the fuels were compared with the pure gasoline fueled engine test data. When the test results of the mixture fuel engine were compared with the test results of the engine running with pure gasoline, the torque of the SE10 fuel engine decreased compared to the pure gasoline engine, while the torque of the SM10 blended engine increased. In addition, while the exhaust gas temperatures of both blended fuels decreased, their specific fuel consumption and thermal efficiency increased. On the other hand, adding NaBH4 doped ethanol and methanol solutions to pure gasoline resulted in better combustion, reductions in CO emissions of SE10 and SM10 blended fuels by 31.04% and 53.7%, but CO2 emissions increased by 11.20% and 19.51% respectively. In addition, NOx emissions of SE10 and SM10 blended fuels decreased by 15.17% and 8.73%, respectively.  相似文献   

5.
With the increasing number of light-duty passenger car, a large amount of waste engine oil was produced yearly which has polluted the environment and wasted fossil resources. Extend engine oil drain interval and reduce its effect on engine emission is of great importance. In this paper, a kind of modified-sawdust engine oil filter was developed and the study focus on its effect on the emission characteristics and fuel consumption rate of spark ignite gasoline engine. This modified-sawdust engine oil filter was also compared with common oil filter. The tests were performed in four-cylinder direct injection gasoline engine at six different typical operating conditions. Various tests were proceed including the exhaust emissions measurement of nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons (HC) as well as the fuel consumption rate measurement. The effect of engine oil change on engine emission and fuel consumption rate were also studied. Impurity element content of waste oil and kinetic viscosity were measured before and after modified oil filter was used. The results show that relative to common oil filter, the modified-sawdust oil filter has 0.4–2.1%, 3.7–7.5%, 1.6–13.3% decrease for CO, HC, NOx emissions, respectively. In addition, it significantly reduces oil consumption, and the three major emission species (CO, HC and NOx) was also reduced when fresh engine oil was adopted. These results indicate that the use of modified-sawdust oil filter is an effective choice to improve gasoline engine emission and fuel economy.  相似文献   

6.
In this study, the applicabilities of Artificial Neural Networks (ANNs) have been investigated for the performance and exhaust-emission values of a diesel engine fueled with biodiesels from different feedstocks and petroleum diesel fuels. The engine performance and emissions characteristics of two different petroleum diesel-fuels (No. 1 and No. 2), biodiesels (from soybean oil and yellow grease), and their 20% blends with No. 2 diesel fuel were used as experimental results. The fuels were tested at full load (100%) at 1400-rpm engine speed, where the engine torque was 257.6 Nm. To train the network, the average molecular weight, net heat of combustion, specific gravity, kinematic viscosity, C/H ratio and cetane number of each fuel are used as the input layer, while outputs are the brake specific fuel-consumption, exhaust temperature, and exhaust emissions. The back-propagation learning algorithm with three different variants, single layer, and logistic sigmoid transfer function were used in the network. By using weights in the network, formulations have been given for each output. The network has yielded R2 values of 0.99 and the mean % errors are smaller than 4.2 for the training data, while the R2 values are about 0.99 and the mean % errors are smaller than 5.5 for the test data. The performance and exhaust emissions from a diesel engine, using biodiesel blends with No. 2 diesel fuel up to 20%, have been predicted using the ANN model.  相似文献   

7.
The aim of this study is to determine the availability of pomegranate seed oil biodiesel (POB) as an alternative fuel in diesel engines and evaluate engine performance and emission characteristics of pure hydrogen enriched POB using diesel engine. For this purpose, the intake manifold of the test engine was modified and hydrogen enriched intake air was supplied throughout the experiments. Physical properties of POB and its blend with diesel fuel were also determined. The results showed that measured physical properties of POB are comparable with diesel fuel. According to engine performance experiments, although POB utilization has slight undesirable effects on some engine performance parameters such as brake power output and specific fuel consumption, it can be used as alternative fuel in diesel engines, by this way CO emission can be improved. Finally, hydrogen enrichment experiments indicated that pure hydrogen addition causes a slight improvement in both engine performance and exhaust emissions.  相似文献   

8.
Compared to widening usage of CNG in commercial gasoline engines, insufficient but increasing number of studies have appeared in open literature during last decades while engine characteristics need to be quantified in exact numbers for each specific fuel converted engine. In this study, a dual sequential spark ignition engine (Honda L13A4 i-DSI) is tested separately either with gasoline or CNG at wide open throttle. This specific engine has unique features of dual sequential ignition with variable timing, asymmetrical combustion chamber, and diagonally positioned dual spark-plug. Thus, the engine led some important engine technologies of VTEC and VVT. Tests are performed by varying the engine speed from 1500 rpm to 4000 rpm with an increment of 500 rpm. The engine’s maximum torque speed of 2800 rpm is also tested. For gasoline and CNG fuels, engine performance (brake torque, brake power, brake specific fuel consumption, brake mean effective pressure), emissions (O2, CO2, CO, HC, NOx, and lambda), and the exhaust gas temperature are evaluated. In addition, numerical engine analyses are performed by constructing a 1-D model for the entire test rig and the engine by using Ricardo-Wave software. In the 1-D engine model, same test parameters are analyzed, and same test outputs are calculated. Thus, the test and the 1-D engine model are employed to quantify the effects of gasoline and CNG fuels on the engine performance and emissions for a unique engine. In general, all test and model results show similar and close trends. Results for the tested commercial engine show that CNG operation decreases the brake torque (12.7%), the brake power (12.4%), the brake mean effective pressure (12.8%), the brake specific fuel consumption (16.5%), the CO2 emission (12.1%), the CO emission (89.7%). The HC emission for CNG is much lower than gasoline. The O2 emission for CNG is approximately 55.4% higher than gasoline. The NOx emission for CNG at high speeds is higher than gasoline. The variation percentages are the averages of the considered speed range from 1500 rpm to 4000 rpm.  相似文献   

9.
One of the major problems for the successful application of gasoline–alcohol mixtures as a motor fuel is the realization of a stable homogeneous liquid phase. To overcome this problem, a new carburetor was designed. With the use of this new carburetor, not only the phase problem was solved but also the alcohol ratio in the total fuel was increased.By using ethanol–gasoline blend, the availability analysis of a spark-ignition engine was experimentally investigated. Sixty percent ethanol and 40% gasoline blend was exploited to test the performance, the fuel consumption, and the exhaust emissions.As a result of this study, it is seen that a new dual fuel system could be serviceable by making simple modifications on the carburetor and these modifications would not cause complications in the carburetor system.  相似文献   

10.
介绍了电提前高能无触点分电器的特性,并利用该产品在492Q汽油机上做了台架试验,结果表明,在不降低最大输出功率和最大扭矩的前提下,明显改善了排放指标。  相似文献   

11.
This paper investigates the effect of ethanol-gasoline-hydrogen in a lean-burn SI engine with different proportions such as E5, E10, E20, E30, and E40 at compression ratio 10.5:1. The results infer that the E10 blend is the optimized one. Further, E10 mixture investigates for 5% and 10% hydrogen addition on energy basis. Overall, this study establishes that the addition of ethanol enhances brake power by 9% and brake thermal efficiency by about 7%. Hydrogen enrichment to E10 mixture shows a significant enhancement in brake power and brake thermal efficiency at a lower equivalence ratio. Further, it observes that the lean limit had extended to a 0.47 equivalence ratio compared to a 0.5 equivalence ratio with the E10, and 0.54 with pure gasoline. The addition of hydrogen to E10, improves the combustion process and heat release rate while it reduces cycle-by-cycle variations and hydrocarbon emissions.  相似文献   

12.
Hydrogen has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fueled spark ignition (SI) engines. In this paper, an experimental study was carried out on a four-cylinder 1.6 L engine to explore the effect of hydrogen addition on enhancing the engine lean operating performance. The engine was modified to realize hydrogen port injection by installing four hydrogen injectors in the intake manifolds. The injection timings and durations of hydrogen and gasoline were governed by a self-developed electronic control unit (DECU) according to the commands from a calibration computer. The engine was run at 1400 rpm, a manifold absolute pressure (MAP) of 61.5 kPa and various excess air ratios. Two hydrogen volume fractions in the total intake of 3% and 6% were applied to check the effect of hydrogen addition fraction on engine combustion. The test results showed that brake thermal efficiency was improved and kept roughly constant in a wide range of excess air ratio after hydrogen addition, the maximum brake thermal efficiency was increased from 26.37% of the original engine to 31.56% of the engine with a 6% hydrogen blending level. However, brake mean effective pressure (Bmep) was decreased by hydrogen addition at stoichiometric conditions, but when the engine was further leaned out Bmep increased with the increase of hydrogen addition fraction. The flame development and propagation durations, cyclic variation, HC and CO2 emissions were reduced with hydrogen addition. When excess air ratio was approaching stoichiometric conditions, CO emission tended to increase with the addition of hydrogen. However, when the engine was gradually leaned out, CO emission from the hydrogen-enriched engine was lower than the original one. NOx emissions increased with the increase of hydrogen addition due to the raised cylinder temperature.  相似文献   

13.
Vehicular Pollution and environmental degradation are on the rise with increasing vehicles and to stop this strict regulation have been put on vehicular emissions. Also, the depleting fossil fuels are of great concern for energy security. This has motivated the researchers to invest considerable resources in finding cleaner burning, sustainable and renewable fuels. However renewable fuels independently are not sufficient to deal with the problem at hand due to supply constraints. Hence, advanced combustion technologies such as homogeneous charge compression ignition (HCCI), low-temperature combustion (LTC), and dual fuel engines are extensively researched upon. In this context, this work investigates dual fuel mode combustion using a constant speed diesel engine, operated using hydrogen and diesel. The engine is operated at 25, 50 and 75% loads and substitution of diesel energy with hydrogen energy is done as 0, 5, 10 and 20%. The effect of hydrogen energy share (HES) enhancement on engine performance and emissions is investigated. In the tested range, slightly detrimental effect of HES on brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) is observed. Comparision of NO and NO2 emissions is done to understand the non-thermal influence of H2 on the NOx emissions. Hence, HES is found beneficial in reducing harmful emissions at low and mid loads.  相似文献   

14.
In this study, an experimental investigation was carried out to determine the effects of gasoline-like fuel (GLF), and its blends with turpentine with ratios of 10%, 20%, and 30% on the performance and emission characteristics of a gasoline engine. The GLF was obtained from waste lubrication engine oil by the method of pyrolitic distillation. Characteristics of the pure GLF and its blends were tested. A series of engine performance and emission tests were conducted using the fuel samples in the test engine. Performance parameters for each test were calculated utilizing measurement values of force exerted on the crank shaft, rate of air and fuel mass flow to the engine and engine speed. Effects of the fuels on the performance parameters, exhaust gas temperature, and emissions of NOx, CO, CO2, and HC were discussed. The results indicated that torque, brake mean effective pressure and thermal efficiency increased but brake specific fuel consumption decreased with increasing amount of turpentine in the GLF sample. The main effect of 10%, 20% and 30% turpentine additions to GLF on pollutant formation was that the NOx ratio increased, whereas that of CO decreased.  相似文献   

15.
This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen (H2), and three other hydrogen-containing gaseous fuels such as primary fuels, and diesel as pilot fuel in dual-fuel mode. The energy share of primary fuels was about 90% or more, and the rest of the energy was supplied by diesel fuel. The hydrogen-containing fuels tested in this study were 13.7% H2-content producer gas, 20% H2-content producer gas and 56.8% H2-content coke oven gas (COG). Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the pilot injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Better thermal efficiency was obtained with the increase in H2 content in the fuels, and neat H2 as a primary fuel produced the highest thermal efficiency. The fuel-air equivalence ratio was decreased with the increase in H2 content in the fuels to avoid knocking. Thus, neat H2-operation produced less maximum power than other fuels, because of much leaner operations. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. The emissions of CO and HC with neat H2-operation were 98-99.9% and NOx about 85-90% less than other fuels.  相似文献   

16.
The effects of exhaust gas recirculation (EGR) on combustion and emissions under different hydrogen ratios were studied based on an engine with a gasoline intake port injection and hydrogen direct injection. The peak cylinder pressure increases by 9.8% in the presence of a small amount of hydrogen. The heat release from combustion is more concentrated, and the engine torque can increase by 11% with a small amount of hydrogen addition. Nitrogen oxide (NOx) emissions can be reduced by EGR dilution. Hydrogen addition offsets the blocking effect of EGR on combustion partially, therefore, hydrogen addition permits a higher original engine EGR rate, and yields a larger throttle opening, which improves the mechanical efficiency and decreases NOx emissions by 54.8% compared with the original engine. The effects of EGR on carbon monoxide (CO) and hydrocarbon (HC) emissions are not obvious and CO and HC emissions can be reduced sharply with hydrogen addition. CO, HC, and NOx emissions can be controlled at a lower level, engine output torque can be increased, and fuel consumption can be reduced significantly with the co-control of hydrogen addition and EGR in a hydrogen gasoline engine.  相似文献   

17.
Because of the limit of properties of gasoline and irregular design of chamber, the pure gasoline rotary engine generally encounters partial burning, increased noxious emissions or even misfire at lean conditions. This situation could be deteriorated at idle because of the high variation in the intake charge and low combustion temperature. Hydrogen addition is proved to remit the deterioration of performance of sparked-ignited (SI) engines at idle and lean conditions. This paper conducted an experiment on a modified rotary engine equipped with gasoline and hydrogen port-injection systems to explore the performance of a hydrogen–gasoline rotary engine (HGRE) at idle and lean conditions. An electronic management unit (EMU) was invented to manage spark and fuel injection. Excess air ratio (λ) and hydrogen volumetric fraction in the total intake (αH2) were also governed through the EMU. For this study, the HGRE was operating at idle and αH2 was kept at 0% and 3%, respectively. For a specific αH2, gasoline flow rate was reduced to make the HGRE run at desired λ. Results indicated that engine fluctuation and fuel energy flow rate were both decreased after hydrogen addition. Combustion duration was cut down and central heat release point was advanced after hydrogen addition. Peak chamber temperature (Tmax), pressure and heat release were enhanced after hydrogen blending. HC, CO and CO2 emissions were simultaneously reduced because of hydrogen enrichment. Specifically, at λ = 1.00, HC, CO and CO2 emissions were respectively reduced from 42,411 to 26,316 ppm, 1.86 to 0.78% and 9.96 to 8.58% when 3% hydrogen was added.  相似文献   

18.
The effects of hydrogen ratios on combustion and emission characteristics of gasoline engine were studied under different exhaust gas recirculation (EGR), ignition timing and ignition pressure. The test performed in a modified gasoline direct ignition engine at different hydrogen ratios of 0%, 5%, 10% and 25%. In addition, the EGR rate set to 0%, 5%, 10% and 20% to study the combustion and emission characteristics. Addition to the different hydrogen fractions, 5% of TiO2 is added to increase the combustion characteristics with reduced emission. Regarding the results of the current study, the engine torque increases by 15% due to the addition of hydrogen in gasoline, while mechanical efficiency is improved by achieving a large throttle opening. At the same time, NOx emission decreased by 62% compared to the unmodified engine due to the influence of EGR, hydrogen ratio and high oxygen concentration TiO2. Moreover, the emission of CO and HC also reduced due to the influence of hydrogen fuel. Additionally, few more tests are taken to monitor the effect of the injection pressure for the hydrogen fuel. Higher injection reports higher effective thermal efficiency at 4 MPa and lower NOx. Reasonable injection pressure results in shorten flame development period.  相似文献   

19.
Availability analysis is applied to cylinder of a spark ignition engine during the combustion process under surrogate fuels (iso-octane, n-heptane, toluene, and methyl-cyclohexane) for gasoline using a two-zone combustion model. Special attention is given to identification and quantification of irreversibility of combustion process basing on the surrogate fuels. This is particularly important since the identification and quantification of irreversibility are not identified in traditional first-law analysis. In identifying these processes, the main differences between second- and first-law analyses are also highlighted. During the combustion process, the availability destroyed by combustion is about 18.9%, and the availability destroyed by the heat transfer is about 12.0%. The survey also reveals that during the whole combustion process shortened combustion duration and postponed ignition are both helpful to reduce availability destruction.  相似文献   

20.
Shuofeng Wang  Changwei Ji  Bo Zhang 《Energy》2010,35(12):4754-4760
Because of the low combustion temperature and high throttling loss, SI (spark-ignited) engines always encounter dropped performance at low load conditions. This paper experimentally investigated the co-effect of cylinder cutoff and hydrogen addition on improving the performance of a gasoline-fueled SI engine. The experiment was conducted on a modified four-cylinder SI engine equipped with an electronically controlled hydrogen injection system and a hybrid electronic control unit. The engine was run at 1400 rpm, 34.5 Nm and two cylinder cutoff modes in which one cylinder and two cylinders were closed, respectively. For each cylinder closing strategy, the hydrogen energy fraction in the total fuel (βH2)(βH2) was increased from 0% to approximately 20%. The test results demonstrated that engine indicated thermal efficiency was effectively improved after cylinder cutoff and hydrogen addition, which rose from 34.6% of the original engine to 40.34% of the engine operating at two-cylinder cutoff mode and βH2=20.41%βH2=20.41%. Flame development and propagation periods were shortened with the increase of the number of closed cylinders and hydrogen blending ratio. The total cooling loss for all working cylinders, and tailpipe HC (hydrocarbons), CO (carbon monoxide) and CO2 (carbon dioxide) emissions were reduced whereas tailpipe NOx (nitrogen oxide) emissions were increased after hydrogen addition and cylinder closing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号