首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
Ni/Y2O3, with Y2O3 support prepared by the conventional precipitation method, was prepared by an impregnation method. The physicochemical properties of Y2O3 and Ni/Y2O3 were characterized by BET, CO2-TPD, NH3-TPD, TPR, XRF and TGA, and compared with those of γ-Al2O3 and Ni/γ-Al2O3, respectively. The catalytic performance of Ni/Y2O3 in the reaction of partial oxidation of methane (POM) to syngas was evaluated and compared with that of Ni/γ-Al2O3 catalyst, too. The results showed that, Y2O3 was a basic support with few acidic sites while γ-Al2O3 was an acidic support. NiO particles supported on Y2O3 were more easily to be reduced than those supported on γ-Al2O3. In the partial oxidation of methane, Ni/Y2O3 catalyst showed high catalytic activity and exhibited better catalytic stability than Ni/γ-Al2O3. After POM reaction at 700 °C for 550 h, methane conversion decreased little and only 2.2 wt% carbon was deposited on Ni/Y2O3 catalyst. Ni/Y2O3 was stable in POM even after a series of reaction temperature variations within the temperature range of 400 ∼ 800 °C.  相似文献   

2.
Al-water reaction promoted by catalysts is a promising hydrogen generation technology. In this work, a high-activity M-B/γ-Al2O3 (M = Co, Ni) catalyst is prepared by wet chemical reduction method. It is found that M-B/γ-Al2O3 catalyst significantly promotes the Al-water reaction and decreases the induction time. When the molar ratio of γ-Al2O3 to Co-M in Co–B/γ-Al2O3 catalyst is 1:1, the induction time is only 0.43 h. The catalytic activity of M-B/γ-Al2O3 is proportional to its active area. SEM analyses show that M-B particles are dispersed on γ-Al2O3 surface, which reduces the agglomeration of M-B and increases the active surface of M-B/γ-Al2O3, leading to a high catalytic activity. A possible mechanism is proposed, which shows that the dissociation of water molecules on γ-Al2O3 surface and the microgalvanic interaction between M-B and Al can promote the hydration process of passive oxide film on Al particle surface, speeding up the Al-water reaction.  相似文献   

3.
Supported nickel metal can be used as a tar-cracking catalyst in the thermal processing of large organics to give H2. Though porous supports offer the opportunity to disperse a relatively large amount of nickel, catalytic sites within small pores may be inaccessible to large tar molecules. To investigate this, we prepared nickel catalysts supported on γ-Al2O3 and on SBA-15- and mesocellular-foam-(MCF)-type silicas and studied their catalytic activities in the pyrolytic decomposition of cellulose (RT → 800 °C, ∂T/∂t = 40 °C/min). A thermogravimetric analyser-mass spectrometer (TG-MS) was used to study the influence of the Ni catalyst and support materials on the H2 yield and selectivity. The silica-MCF-supported Ni catalyst decreased char residue and enhanced H2 yield, producing 1.6 and 3.5× the H2 yield obtained using SBA-15-supported Ni and γ-Al2O3-supported Ni, respectively. MCF, with ultra-large pores (d ∼ 15−50 nm), was thus identified as the most beneficial catalyst support for this application.  相似文献   

4.
A series of Ni/MgxAl catalysts with different Mg/Al molar ratios were prepared by impregnating Mg-Al mixed oxides with nickel nitrate aqueous solution and used for the pre-reforming of LPG in the temperature range of 400-500 °C. XRD and H2-TPR results showed that the Ni/MgxAl catalysts calcined at 800 °C mainly consisted of γ-Al2O3, Mg(Ni)Al2O4 and Mg(Ni)O phases varying with Mg/Al molar ratio without free NiO species observed. The effects of Mg/Al molar ratio, S/C molar ratio and reaction temperature on the catalytic behavior of the Ni/MgxAl catalysts were investigated in detail. The results revealed that the catalyst with Mg/Al molar ratio of 1.25 had the highest catalytic activity and stability. The increase in S/C molar ratio promoted both the steam reforming of LPG and the methanation of carbon oxides and hydrogen. The stability tests of 15%Ni/Mg1.25Al catalyst showed that the catalyst was stable for the pre-reforming of LPG, and the stability decreased with elevating the reaction temperature due to more coke deposition.  相似文献   

5.
In total 17 heterogeneous catalysts, with combinations of 4 transition metals (Ni, Ru, Cu and Co) and various promoters (e.g., Na, K, Mg, or Ru) supported on different materials (γ-Al2O3, ZrO2, and activated carbon (AC)), were investigated with respect to their catalytic activity and stability for H2 production from glucose via supercritical water gasification (SCWG). The experiments were carried out at 600 °C and 24 MPa in a bench-scale continuous-flow tubular reactor. Ni (in metallic form) and Ru (in both metallic and oxidized forms) supported on γ-Al2O3 exhibited very high activity and H2 selectivity among all of the catalysts investigated for a time-on-stream of 5-10 h. With Ni20/γ-Al2O3 (i.e., γ-Al2O3 with 20 wt% Ni), a H2 yield of 38.4 mol/kg glucose was achieved, approximately 20 times higher than that obtained during the blank test without catalyst (1.8 mol/kg glucose). In contrast, Cu and Co catalysts were much less effective for glucose SCWG reactions. As for the effects of catalyst support materials on activity, the following order of sequence was observed: γ-Al2O3 > ZrO2 > AC. In addition, Mg and Ru were found to be effective promoters for the Ni/γ-Al2O3 catalyst, suppressing coke and tar formation.  相似文献   

6.
Ni, Co and bimetallic Ni–Co catalysts supported on Ca-γ-Al2O3 and ZrO2 were investigated for the production of hydrogen via ethanol steam reforming (ESR). Catalysts were prepared by wet impregnation method and characterized using temperature-programmed reduction (TPR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). ESR and temperature-programmed desorption of ethanol (ethanol-TPD) were carried out in a continuous flow fixed bed micro-reactor and the outlet gases were monitored by an on-line GC or MS. Ni is found to be more active for the C–C bond rupture than Co on both supports, Ca-γ-Al2O3 and ZrO2. Catalyst support plays very important roles for the ESR. Strong interaction between support and metal affects the formation of NiCo bimetallic compound, resulting in the variety of catalytic activity. On Ca-γ-Al2O3 support, the catalytic activity of ESR follows the sequence of 10%Ni > 6.7%Ni 3.3%Co ∼ 3.3%Ni 6.7%Co > 10%Co. On ZrO2, the trend is 10%Ni > 6.7%Ni 3.3%Co > 10%Co > 3.3%Ni 6.7%Co. The H2O adsorption/activation ability of the support determines the reaction pathway and thus the product selectivity. On Ca-γ-Al2O3, water gas shift reaction is more favorable than on ZrO2, due to the availability of surface OH groups. The roles of the metal and support for ESR are also discussed.  相似文献   

7.
This paper presents the results from experimental study of syngas production by catalytic cracking of tar in wastewater under supercritical condition. Ni/Al2O3 catalysts were prepared via the ultrasonic assisted incipient wetness impregnation on activated alumina, and calcined at 600 °C for 4 h. All catalysts showed mesoporous structure with specific surface area in a range of 146.6–215.3 m2/g. The effect of Ni loading (5–30 wt%), reaction temperature (400–500 °C), and tar concentration (0.5–7 wt%) were systematically investigated. The overall reaction efficiency and the gas yields, especially for H2, were significantly enhanced with an addition of Ni/Al2O3 catalysts. With 20%Ni/Al2O3, the H2 yield increased by 146% compared to the non-catalytic experiment. It is noteworthy that the reaction at 450 °C with the addition of 20%Ni/Al2O3 had a comparable efficiency to the reaction without catalyst at 500 °C. The maximum H2 yield of 46.8 mol/kgtar was achieved with 20%Ni/Al2O3 at 500 °C and 0.5 wt% tar concentration. The catalytic performance of the catalysts gradually decreased as the reuse cycle increased, and could be recovered to 88% of the fresh catalyst after regeneration. 20%Ni/Al2O3 has a potential to improve H2 production, as well as a good reusability. Thus, it is considered a promising catalyst for energy conversion of tar in wastewater.  相似文献   

8.
Two types of mesoporous γ-aluminas (denoted as A-A and A-S) are prepared by a hydrothermal method under different basic conditions using cationic surfactant (cetyltrimethylammonium bromide, CTAB) as a templating agent. A-A and A-S are synthesized in a medium of ammonia solution and sodium hydroxide solution, respectively. Ni/γ-Al2O3 catalysts (Ni/A-A and Ni/A-S) are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of a mesoporous γ-Al2O3 support on the catalytic performance of Ni/γ-Al2O3 is investigated. The identity of basic solution strongly affects the physical properties of the A-A and A-S supports. The high surface-area of the mesoporous γ-aluminas and the strong metal–support interaction of supported catalysts greatly enhance the dispersion of nickel species on the catalyst surface. The well-developed mesopores of the Ni/A-A and Ni/A-S catalysts prohibit the polymerization of carbon species on the catalyst surface during the reaction. In the steam reforming of LNG, both Ni/A-A and Ni/A-S catalysts give better catalytic performance than the nickel catalyst supported on commercial γ-Al2O3 (Ni/A-C). In addition, the Ni/A-A catalyst is superior to the Ni/A-S catalyst. The relatively strong metal–support interaction of Ni/A-A catalyst effectively suppresses the sintering of metallic nickel and the carbon deposition in the steam reforming of LNG. The large pores of the Ni/A-A catalyst also play an important role in enhancing internal mass transfer during the reaction.  相似文献   

9.
Glycerol reforming under catalytic supercritical water at temperatures in the range of 723–848 K using Co catalyst deposited on various supports including ZrO2, yttria-stabilized zirconia (YSZ), La2O3, γ-Al2O3, and α-Al2O3 was investigated. An increase in operating temperature promoted the continued increase in glycerol conversion; however, carbon formation causing system operation failure was observed for γ-Al2O3 and α-Al2O3 at high operating temperatures (i.e. 748–798 K). Co supported on YSZ provided the most efficient performance for hydrogen production. 10 wt.% Co loading on YSZ support was an optimum amount to enhance the reaction. The increase in glycerol conversion and reduction of the amount of liquid products were observed for lower weight hourly space velocity (WHSV), higher operating temperature or higher cobalt loading. On Co/YSZ catalyst, glycerol conversion of 0.94 and hydrogen yield of 3.72 was obtained with WHSV of 6.45 h−1at 773 K.  相似文献   

10.
Highly ordered mesoporous γ-Al2O3 particles and MgO materials were synthesized by evaporation induced self-assembly (EISA) and template-free hydrothermal co-precipitation routes, respectively. Ni, Ni–MgO, and Ni–La2O3-containing catalysts were prepared using a wet-impregnation method. The synthesized catalysts were characterized by N2 adsorption–desorption, XRD, SEM-EDS, DRIFTS, XPS, TGA-DTA, and Raman spectroscopy analysis. The mesoporous γ-Al2O3 catalyst support exhibited a high surface area of 245 m2/g and average pore volume of 0.481 cm3/g. The DRIFTS results indicate the existence of large Lewis's acid regions in the pure γ-Al2O3 and metal-containing catalysts. Catalytic activity tests of pure materials and metal-containing catalysts were carried out at the reaction temperature of 750 °C and a feed molar ratio of AA/H2O/Ar:1/2.5/2 over 3 h. Complete conversion of acetic acid and 81.75% hydrogen selectivity were obtained over the catalyst 5Ni@γ-Al2O3. The temperature and feed molar ratio had a noticeable impact on H2 selectivity and acetic acid conversion. Increasing the water proportion in the feed composition from 2.5 to 10 considerably improved the catalytic activity by increasing hydrogen selectivity from 81.75% to 91%. Although the Ni-based γ-Al2O3-supported catalysts exhibited higher activity performance compared to the Ni-based MgO-supported catalysts, they were not as resistant to coke formation as were MgO-supported catalysts. The introduction of MgO and La2O3 into the Ni@γ-Al2O3 and Ni@MgO catalysts' structures played a significant role in lowering the carbon formation (from 37.15% to 17.6%–12.44% and 12.17%, respectively) and improving the thermal stability of the catalysts by decreasing the agglomeration of acidic sites and reinforcing the adsorption of CO2 on the catalysts' surfaces. Therefore, coke deposition was reduced, and catalyst lifetime was improved.  相似文献   

11.
Improved catalytic centres with a minimum mass-loading of expensive platinum (Pt) have been anticipated for various catalytic applications, for instance preferential oxidation (PROX) of carbon monoxide (CO) in the presence of Hydrogen. Here, we report the synthesis of nano-Pt on the surface of copper (Cu) nanoparticles (NPs) supported on γ-Al2O3 (Ptn(Cu)/γ-Al2O3) via galvanic displacement reaction (GDR) for the catalytic CO-PROX reaction. Ptn(Cu)/γ-Al2O3 showed much improved CO-PROX performance compared to that of the as-synthesized Ptl(Cu)/γ-Al2O3 catalyst. Importantly, no significant conversion of hydrogen at a lower temperature range (<200 °C) is observed during the CO-PROX reaction which is one of the essential prerequisites for the CO-PROX reaction. Moreover, Ptn(Cu)/γ-Al2O3 showed the durable, long-term catalytic CO-PROX performance for 120 h. These results infer that realization of nano-Pt on the surface of the Cu NPs holds the promise as the catalytic centres with the minimum mass-loading of Pt for the CO-PROX reaction.  相似文献   

12.
The hydrothermal stability of Ni and NiPt-containing γ-Al2O3 catalysts in aqueous phase reforming (APR) of glycerol/water mixture (C3H8O3/H2O, 10% w/w) was investigated putting in evidence the influence of the preparation method; sol–gel in basic medium (SGB) and impregnation on an in-house prepared sol–gel γ-Al2O3 support (SGI). All developed catalysts were characterized by ICP-AES, TPR-H2, in-situ heating XRD-O2, DSC/TG-N2/O2 and ex-situ reduction of XRD-H2, N2 physisoption and TEM techniques. The results indicate that SGI method and calcination treatment at 750 °C were crucial in extending the catalytic useful life of NiPt-containing γ-Al2O3 catalysts, resulting in an adequate distribution of NiPt metallic particles and good stability of γ-Al2O3 support against the severe hydrothermal conditions of APR process. The SGI method led to form stable NiPt catalysts with relatively big Ni particles and stable hydrothermal properties of γ-Al2O3 support, while the SGB catalysts exhibited well-dispersed Ni particles but unstable catalytic behavior. These last catalysts presented high glycerol conversions during the first hours of APR glycerol/water reaction, however, an important decrease in terms of glycerol conversion was observed after 24 h time-on-stream. The experimental results suggested that the most suitable stable and active catalyst was the NiPt/ASGI7 (better than >NiPt/ASGI6 > NiPt/ASGI5 >>> NiPt/ASGB7). This catalyst showed best catalytic activity and good catalytic stability along 56 h of time-on-stream, reaching, at steady state, highest total glycerol conversion (≈79%) and glycerol into gaseous products (≈57%) in APR reaction of glycerol/water mixture for hydrogen generation.  相似文献   

13.
Hydrogen is an ideal energy carrier and can play a very important role in the energy system. The present study investigated the enhancement of hydrogen production from catalytic dry reforming process. Two catalysts namely Ni/γ-Al2O3 and Co/γ-Al2O3 promoted with different amounts of strontium were used to explore selectivity and yield of hydrogen production. Spent and fresh catalysts were characterized using techniques such as BET, XRD, H2-TPR, CO2-TPD, TGA and O2-TPO. The catalyst activity and characterization results displayed stability improvement due to addition of Sr promoter. The least coke formations i.e. 3.8 wt% and 5.1 wt% were obtained using 0.75 wt% Sr doped in Ni/γ-Al2O3 and 0.5 wt% Sr doped in Co/γ-Al2O3 catalysts respectively. Time on stream tests of promoted catalysts for about six hours at 700 °C showed stable hydrogen selectivity. Moreover, the hydrogen selectivity was significantly improved by the addition of Sr in Ni and Co based catalysts. For instance the hydrogen selectivity increased from 45.9% to 47.8% for Ni/γ-Al2O3 and from 48% to 50.9% for Co/γ-Al2O3 catalyst by the addition of 0.75 wt% Sr in Ni/γ-Al2O3 and 0.5 wt% Sr in Co/γ-Al2O3 catalyst respectively.  相似文献   

14.
Activity and stability of the supported Ni-based catalysts for the gasification performances of phenol solution and coal-gasification wastewater in supercritical water were studied in a continuous reactor at 480 °C, 25 MPa and oxygen ratio of 0.2 for 50 h operation. The influences of the supports (γ-Al2O3, active carbon (AC) and carbon nanotube (CNT)) on gas yields, gasification efficiencies for phenol solution were investigated, and the loading amount of Ni were optimized. Results showed that the catalytic activity and the stability of the catalysts followed the order of Ni/CNT > Ni/AC > Ni/γ-Al2O3. The activity of Ni/AC and Ni/γ-Al2O3 decreased after 30 h continuous operation, and there occurred significant leaching of Ni2+. For Ni/CNT catalyst, H2 yield increased obviously when the loading amount of Ni lower than 15 wt%, while increased little at higher loading amount. Then, 15 wt% Ni/CNT with a thickness of 1.5 mm was coated on 316 L stainless steel (SS316L, an economic material usually used as the reactor material), which can act as a "catalytic tube wall" in reactor. The catalytic activity and corrosion resistance of Ni/CNT/SS316L for the gasification of real coal-gasification wastewater were studied. Results showed that Ni/CNT/SS316L gave a great positive effect on H2 production. H2 yield increased from 25.36 mmol/g (total organic carbon) without catalyst to 75.12 mmol/g (total organic carbon) with Ni/CNT/SS316L after operated for 20 h, respectively. However, obvious pealing of the coating was found after 50 h operation. Further study is necessary for the improvement of the coating preparation method.  相似文献   

15.
In this study, innovative Ni-based catalysts supported by five typical slag carriers (magnesium slag (MS), steel slag (SS), blast furnace slag (BFS), pyrite cinder (PyC) and calcium silicate slag (CSS)) were prepared by wet impregnation. With the prepared catalysts and Ni/γ-Al2O3 catalyst, catalytic reforming of pyrolysis volatiles from pine sawdust for syngas production and tar removal was investigated. The catalysts were characterized by BET, XRD, SEM, TEM and Raman. The catalytic performances of the six catalysts were decreasing in the following order: Ni/MS > Ni/γ-Al2O3 > Ni/SS > Ni/BFS > Ni/CSS > Ni/PyC. Ni/MS catalyst exhibited excellent catalytic reactivity as well as thermal stability in terms of tar conversion (95.19%), gas yield (1.46 Nm3/kg) and CO2 capture ability (CO2 yield of 0.5%). Both amorphous carbon and graphite-type carbon were formed on the catalysts after catalytic reforming and the D/G ratio (the relative intensity ratio of the D-band to the G-band) was positively correlated to the catalytic activity.  相似文献   

16.
The catalytic performance of nickel catalysts supported on La2O3, α-Al2O3, γ-Al2O3, ZrO2, and YSZ for supercritical water reforming of glycerol was investigated. Experiments were conducted in a tubular reactor made of Inconel-625 with the temperature range of 723–848 K under a pressure of 25 MPa. Carbon formation causing operation failure was observed for α-Al2O3, γ-Al2O3 and ZrO2 at temperatures higher than 748, 798 and 823 K, respectively. Ni/La2O3 exhibited the highest H2 yield where almost complete conversion was obtained at 798 K. Moderate space velocities (WHSV = 6.45 h−1) and glycerol feed concentration (5wt.%) favor high hydrogen selectivity and yield. Methanation is favored at a low WHSV or high glycerol feed concentration, resulting in a lower H2 yield. Increasing Ni loading on the Ni/La2O3 catalyst strongly promoted the reforming, water–gas shift, and methanation reactions, which contributed significantly to the product species distribution.  相似文献   

17.
Cu–Ni/γ-Al2O3 catalysts with different metal contents for dimethyl ether steam reforming (DME SR) were prepared by the method of deposition–precipitation. Characterization of specific surface area measurement (BET), X-ray diffraction (XRD) and hydrogen temperature-programmed reduction (H2-TPR) revealed that nickel improved the dispersion of copper, increased the interaction between copper and γ-Al2O3, and therefore, inhibited the sintering of copper. Ammonia temperature-programmed desorption (NH3-TPD) showed that metal particles could occupy the acid sites, leading to the decrease in acid amount and acid strength of Cu–Ni/γ-Al2O3 catalyst. Kinetic measurements indicated that γ-Al2O3 is vital for DME SR and a higher content of γ-Al2O3 in catalyst was needed. The addition of nickel suppressed the water gas shift (WGS) reaction. Initial durability testing showed that the conversion of DME over Cu–Ni/γ-Al2O3 catalyst was always almost complete during the 30 h experimental reaction time. Therefore, Cu–Ni/γ-Al2O3 could be a potential DME SR catalyst for the production of hydrogen.  相似文献   

18.
Ni/γ-Al2O3 catalyst was prepared by direct treatment of Ni(NO3)2/γ-Al2O3 precursor with dielectric barrier discharge (DBD) hydrogen plasma at different input powers, characterized by XRD, H2-TPR, CO2-TPD, N2 adsorption and TEM, respectively, and used as the catalyst for CO2 reforming of methane (CRM). The results showed that the input power obviously affected the reduction degree and catalytic performances of catalysts. Low input power under 40 W mainly resulted in the decomposition of nickel nitrate into Ni oxides. The reduction degree, catalytic activity and stability increase with the input power. Similar catalytic performances in CRM reaction can be obtained when the power exceeds 80 W. Compared with the Ni/Al2O3 catalyst prepared by traditional method, Ni/γ-Al2O3 samples prepared by H2 DBD plasma exhibit better activities, stability and anti-carbon deposit performances. It is mainly ascribed to smaller Ni particle size, more basic sites and weaker basicity. The increase of Ni particle sizes due to the sintering at high temperature results in the decrease of catalytic activities and coke formation.  相似文献   

19.
Partial oxidation of methane was studied over new Ni nanocatalysts prepared from Ni-impregnated γ-AlOOH, which were compared with their counterparts derived from impregnated γ-Al2O3 and α-Al2O3. The prepared catalysts were characterized by powder X-ray diffraction (XRD), N2-sorption, H2-temperatue programmed reduction, scanning electron microscopy, transmission electron microscopy, thermal gravimetric analysis, CO2- and NH3-temperature-programmed desorption, Raman spectroscopy, CO chemisorption, and diffuse reflectance infrared Fourier transform spectroscopy of adsorbed CO. Employing γ-AlOOH as the support precursor resulted in significantly improved textural properties and catalytic activity. The structure of the support precursor and its surface properties showed a strong influence on the type of Ni active species and their interactions with the support. γ-AlOOH-derived catalysts showed NiO as the dominant Ni species when calcined at 500°C to 650°C, while NiAl2O4 became the sole phase at higher temperatures. On the other hand, mixtures of NiO and NiAl2O4 formed over γ-Al2O3, calcined before impregnation, regardless of the precalcination temperature. All γ-AlOOH-derived catalysts showed higher specific surface areas compared to their counterparts derived from impregnated γ-Al2O3. Upon calcination at moderate temperatures, γ-AlOOH-derived catalysts also showed modified textural and morphological properties of the Ni active particles, including higher Ni dispersion, larger metal surface area, and smaller Ni crystallites. The support precursor and the pretreatment conditions showed a strong influence on the catalytic performance, which was referred to their significant effect on the type of the Ni species and interactions with the support. All catalysts showed higher catalytic activity than the α-Al2O3-derived catalyst, with CH4 conversion between 86% and 88.5% at 700°C. While γ-AlOOH- and γ-Al2O3-derived catalysts calcined at 650°C showed a stable CH4 conversion around 88%, and higher syngas selectivity than the other catalysts, Ni/γ-AlOOH-650 showed the highest selectivity to syngas, with a H2/CO ratio very close to 2.0. The improved Ni dispersion and the enhanced syngas selectivity obtained in the preset work demonstrate that using γ-AlOOH as a support precursor holds a great promise for the development of a new route for more efficient Ni catalysts compared with the widely studied γ-Al2O3 and α-Al2O3 support precursors.  相似文献   

20.
Al2O3–ZrO2 (AZ) xerogel supports prepared by a sol-gel method were calcined at various temperatures. Ni/Al2O3–ZrO2 (Ni/AZ) catalysts were then prepared by an impregnation method for use in hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of calcination temperature of AZ supports on the catalytic performance of Ni/AZ catalysts in the steam reforming of LNG was investigated. Crystalline phase of AZ supports was transformed in the sequence of amorphous γ-Al2O3 and amorphous ZrO2  θ-Al2O3 and tetragonal ZrO2   + α)-Al2O3 and (tetragonal + monoclinic) ZrO2  α-Al2O3 and (tetragonal + monoclinic) ZrO2 with increasing calcination temperature from 700 to 1300 °C. Nickel oxide species were strongly bound to γ-Al2O3 and θ-Al2O3 in the Ni/AZ catalysts through the formation of solid solution. In the steam reforming of LNG, both LNG conversion and hydrogen composition in dry gas showed volcano-shaped curves with respect to calcination temperature of AZ supports. Nickel surface area of Ni/AZ catalysts was well correlated with catalytic performance of the catalysts. Among the catalysts tested, Ni/AZ1000 (nickel catalyst supported on AZ support that had been calcined at 1000 °C) with the highest nickel surface area showed the best catalytic performance. Well-developed and pure tetragonal phase of ZrO2 in the AZ1000 support played an important role in the adsorption of steam and the subsequent spillover of steam from the support to the active nickel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号