首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
Fuel injection pressure and injection timing are two extensive injection parameters that affect engine performance, combustion, and emissions. This study aims to improve the performance, combustion, and emissions characteristics of a diesel engine by using karanja biodiesel with a flow rate of 10 L per minute (lpm) of enriched hydrogen. In addition, the research mainly focused on the use of biodiesel with hydrogen as an alternative to diesel fuel, which is in rapidly declining demand. The experiments were carried out at a constant speed of 1500 rpm on a single-cylinder, four-stroke, direct injection diesel engine. The experiments are carried out with variable fuel injection pressure of 220, 240, and 260 bar, and injection timings of 21, 23, and 25 °CA before top dead center (bTDC). Results show that karanja biodiesel with enriched hydrogen (KB20H10) increases BTE by 4% than diesel fuel at 240 bar injection pressure and 23° CA bTDC injection timing. For blend KB20H10, the emissions of UHC, CO, and smoke opacity are 33%, 16%, and 28.7% lower than for diesel. On the other hand NOx emissions, rises by 10.3%. The optimal injection parameters for blend KB20H10 were found to be 240 bar injection pressure and 23 °CA bTDC injection timing based on the significant improvement in performance, combustion, and reduction in exhaust emissions.  相似文献   

2.
3.
The high flammability of hydrogen gas gives it a steady flow without throttling in engines while operating. Such engines also include different induction/injection methods. Hydrogen fuels are encouraging fuel for applications of diesel engines in dual fuel mode operation. Engines operating with dual fuel can replace pilot injection of liquid fuel with gaseous fuels, significantly being eco-friendly. Lower particulate matter (PM) and nitrogen oxides (NOx) emissions are the significant advantages of operating with dual fuel.Consequently, fuels used in the present work are renewable and can generate power for different applications. Hydrogen being gaseous fuel acts as an alternative and shows fascinating use along with diesel to operate the engines with lower emissions. Such engines can also be operated either by injection or induction on compression of gaseous fuels for combustion by initiating with the pilot amount of biodiesel. Present work highlights the experimental investigation conducted on dual fuel mode operation of diesel engine using Neem Oil Methyl Ester (NeOME) and producer gas with enriched hydrogen gas combination. Experiments were performed at four different manifold hydrogen gas injection timings of TDC, 5°aTDC, 10°aTDC and 15°aTDC and three injection durations of 30°CA, 60°CA, and 90°CA. Compared to baseline operation, improvement in engine performance was evaluated in combustion and its emission characteristics. Current experimental investigations revealed that the 10°aTDC hydrogen manifold injection with 60°CA injection duration showed better performance. The BTE of diesel + PG and NeOME + PG operation was found to be 28% and 23%, respectively, and the emissions level were reduced to 25.4%, 14.6%, 54.6%, and 26.8% for CO, HC, smoke, and NOx, respectively.  相似文献   

4.
The present study highlights the influence of fuel injection pressure (FIP) and fuel injection timing (FIT) of Jatropha biodiesel as pilot fuel on the performance, combustion and emission of a hydrogen dual fuel engine. The hydrogen flow rates used in this study are 5lit/min, 7lit/min, and 9lit/min. The pilot fuel is injected at three FIPs (500, 1000, and 1500 bar) and at three FITs (5°, 11°, and 17?bTDC). The results showed an increase in brake thermal efficiency (Bth)from 25.02% for base diesel operation to 32.15% for hydrogen-biodiesel dual fuel operation with 9lit/min flow rate at a FIP of 1500 bar and a FITof17?bTDC. The cylinder pressure and heat release rate (HRR) are also found to be higher for higher FIPs. Advancement in FIT is found to promote superior HRR for hydrogen dual fuel operations. The unburned hydrocarbon (UHC) and soot emissions are found to reduce by 59.52% and 46.15%, respectively, for hydrogen dual fuel operation with 9lit/min flow rate at a FIP of 1500 bar and a FIT of 11?bTDC. However, it is also observed that the oxides of nitrogen (NOX) emissions are increased by 20.61% with 9lit/min hydrogen flow rate at a FIP of 1500 bar and a FIT of 17?bTDC. Thus, this study has shown the potential of higher FIP and FIT in improving the performance, combustion and emission of a hydrogen dual fuel engine with Jatropha biodiesel as pilot fuel.  相似文献   

5.
Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15°, 20° and 25 °CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NOx and CO2 emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NOx and CO2 emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 °CA BTDC). On the other hand, with the advanced injection timing (25 °CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NOx and CO2 emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads.  相似文献   

6.
In the present study, a comparative analysis of enrichment of hydrogen alongside diesel fuel and two different sources of biodiesel namely rice bran oil is an edible oil, and karanja oil being non-edible is tested. Hydrogen at a fixed flow rate of 7 lpm is inducted through the intake manifold. A total of six fuel samples are considered: diesel (D), hydrogen-enriched diesel (D + H2), hydrogen-enriched 10, and 20% rice bran biodiesel blend (RB10 + H2 and RB20 + H2), and hydrogen-enriched 10 and 20% karanja biodiesel blend (KB10 + H2 and KB20 + H2). Results indicate that enrichment of hydrogen improves combustion and results in 2.5% and 1.6% increase in the brake thermal efficiency of diesel fuel and rice bran biodiesel, respectively. For karanja biodiesel the increment is negligible. Fuel consumption of the D + H? is 6.35% lower and for RB10 + H? and KB10 + H? it is decreased by 2.9% and 1.3%, respectively. The Presence of hydrogen shows the 4–38% lower CO emissions and 6–14% lower UHC emission due to better combustion. The blends RB10 + H? and KB10 + H? produce up to 6–13% higher NOx emission and that for the blends RB20 + H? and KB20 + H? it goes up to 25%. Overall rice bran oil is found to provide better performance than karanja biodiesel.  相似文献   

7.
The increased focus on alternative fuels research in the recent years are mainly driven by escalating crude oil prices, stringent emission norms and the concern on clean environment. The processed form of vegetable oil (biodiesel) has emerged as a potential substitute for diesel fuel on account of its renewable source and lesser emissions. The experimental work reported here has been carried out on a turbocharged, direct injection, multi-cylinder truck diesel engine fitted with mechanical distributor type fuel injection pump using biodiesel-methanol blend and neat karanji oil derived biodiesel under constant speed and varying load conditions without altering injection timings. The results of the experimental investigation indicate that the ignition delay for biodiesel-methanol blend is slightly higher as compared to neat biodiesel and the maximum increase is limited to 1 deg. CA. The maximum rate of pressure rise follow a trend of the ignition delay variations at these operating conditions. However, the peak cylinder pressure and peak energy release rate decreases for biodiesel-methanol blend. In general, a delayed start of combustion and lower combustion duration are observed for biodiesel-methanol blend compared to neat biodiesel fuel. A maximum thermal efficiency increase of 4.2% due to 10% methanol addition in the biodiesel is seen at 80% load and 16.67 s−1 engine speed. The unburnt hydrocarbon and carbon monoxide emissions are slightly higher for the methanol blend compared to neat biodiesel at low load conditions whereas at higher load conditions unburnt hydrocarbon emissions are comparable for the two fuels and carbon monoxide emissions decrease significantly for the methanol blend. A significant reduction in nitric oxide and smoke emissions are observed with the biodiesel-methanol blend investigated.  相似文献   

8.
This study reports the results of an experimental investigation of the performance of an IC engine fueled with a Karanja biodiesel blends, followed by multi-objective optimization with respect to engine emissions and fuel economy, in order to determine the optimum biodiesel blend and injection timings complying with Bharat Stage II emission norms. Nonlinear regression has been used to regress the experimentally obtained data to predict the brake thermal efficiency, NOx, HC and smoke emissions based on injection timing, blend ratio and power output. To acquire the data, experimental studies have been conducted on a single cylinder, constant speed (1500 rpm), direct injection diesel engine under variable load conditions and injection timings for neat diesel and various Karanja biodiesel blends (5%, 10%, 15%, 20%, 50% and 100%). Retarding the injection timing for neat Karanja biodiesel resulted in an improved efficiency and lower HC emissions. A tradeoff relationship between the NOx and smoke emissions is observed, which makes it difficult to determine the optimum blend ratio. The functional relationship developed between the correlating variables using nonlinear regression is able to predict the performance and emission characteristics with a correlation coefficient (R) in the range of 0.95-0.99 and very low root mean square errors. The outputs obtained using these functions are used to evaluate the multi-objective function of optimization process in the 0-20% blend range. The overall optimum is found to be 13% biodiesel-diesel blend with an injection timing of 24°bTDC, when equal weightage is given to emissions and efficiency.  相似文献   

9.
Alternative fuels have sparked a lot of interest as oil deposits have decreased and environmental concerns have grown. Biodiesel is an alternative fuel that is being researched as a possible replacement for fossil fuels. In the current investigation, the combustion performance, and emission characteristics of CI(Compression Ignition) engine were examined by changing the fuel injection pressure (180, 200, 220 and 240 bar). The biodiesel (B20) used in this analysis was obtained from Mahua oil at 20% v/v blended with neat diesel (20% Mahua Biodiesel + 80% Diesel). CeO2(Cerium Oxide) nanoparticles were introduced to the B20 fuel at four distinct concentrations are 25, 50, 75, and 100 ppm. Performance characteristics such as BTE(Brake Thermal Efficiency) and BSFC(Brake Specific Fuel Consumption) were inferior to diesel, at 240 bar B20 with 25 ppm CeO2 indicated 1.9% increased BTE and 3.8% reduced BSFC compared B20 and 6% lower EGT (Exhaust Gas Temperature) compared diesel. At 200 bar, fuel samples indicated slightly higher In-Cylinder pressure and lower HRR (Heat release rate) compared to diesel. At 200 bar FIP(Fuel Injection Pressure), HC(Hydro Carbon) and CO(Carbon Monoxide) emissions were reduced significantly compared to diesel. The largest reduction in smoke opacity and NOx(Nitrous Oxide) emissions were observed at 240 bar with 75 ppm dosage, but CO2(Carbon Dioxide) emissions were higher at 220 bar.  相似文献   

10.
The usage of biodiesel blends is restricted due to its low fuel consumption and high thermal NOx. The current study exhibits the usage of four different fuel additives methanol, ethanol, diethyl ether, and NiO nanoparticles in Neem biodiesel blend (NB25) to shore up the usage of neem oil methyl ester. Performance and emission experimentation of a compression-ignition engine fueled with NB25 having fuel additives were conducted at varying injection opening pressures (180, 210, and 240 bar) and static injection timings (19°, 23°, and 27° bTDC). The results indicate that when NiO fuel additives were doped in the NB25 blend, high peaks of NOx were found with betterment in performance features with a lower CO and HC emission.  相似文献   

11.
Biofuels are considered as one of the best viable and inexhaustible alternatives to conventional diesel fuel. Alcohols have become very important and popular in the present scenario due to their characteristic fuel properties and production nature. This study examines the influence of 1-pentanol and hydrogen on various performance characteristics of CRDI diesel engines. The experiment was carried out with a load range of 25%–100% in 25% percent increments, at 1500 rpm constant engine speed. The influence of injection-timing at 9°, 12°and 15°bTDC was first investigated using 30% 1-pentanol as fuel to observe the effect on engine parameters in comparison with base fluid. Compared to conventional and retarded injection timings, 1-pentanol displayed better emission and performance characteristics at higher injection timings. Additionally, at 15°bTDC, 30% 1-pentanol was used with 12 LPM hydrogen in a dual fuel mode. Compared to plain diesel, the hydrogen-enriched fuel resulted in a 1.50% lower HRR (heat release rate) and 6.77% higher cylinder pressure at 75% load. Thus, it is evident that hydrogen enrichment at 75% load effectively reduces hydrocarbon and nitrogen oxide emissions by 6.66% and 10%, respectively, and improves thermal efficiency by 5%. The experiment revealed that 1-pentanol performs effectively at higher injection timings and that hydrogen improved the performance even further. Furthermore, the long-term viability of hydrogen and 1-pentanol as an energy source is well demonstrated in future scenarios.  相似文献   

12.
Fast exhausting fossil fuel reserves and high rise in the air pollution levels due to combustion of these fuels bound us to discover some cleaner and environment-friendly fuels for the engines. Biodiesel from edible and non-edible seed oils has been identified as a better alternate of the diesel fuel in engines with a little sacrifice in terms of power output but with an improvement in exhaust emissions. The aim of the present research work is to optimize the input parameters of diesel engine running on Polanga biodiesel to improve performance and exhaust emissions. The input parameters selected for optimization are fuel injection timing, fuel injection pressure, Polanga biodiesel blend, and engine load with respect to brake thermal efficiency, brake specific fuel consumption, hydrocarbon emission, smoke opacity, and emission of nitrogen oxides. Relative weights of the response variables were calculated by standard deviation. The optimum combination of input parameters was obtained by Taguchi-based Multi-Objective Optimization by Ratio Analysis. Experiments were performed according to Taguchi’s L16 orthogonal array in a random manner in which three replicates of each experiment were noted. The optimum combination of input parameters for maximum performance and minimum exhaust emissions found to be as fuel injection timing 27° bTDC, fuel injection pressure –? 220 bar, biodiesel blend –? B40, and engine load –? 60%. The optimum values of the response variables, at the obtained optimum combination of input parameters, were predicted by Taguchi method and then verified experimentally and a good relation was found between them. These optimum values found to be as brake thermal efficiency –? 36.351%, brake specific fuel consumption –? 0.322 kg/kW-h, hydrocarbon emission –? 2.193 ppm, smoke opacity –? 80.925 HSU, and NOx emission –? 690.987 ppmv.  相似文献   

13.
Recently, the increasing demand for energy requires the use of alternative fuels, especially in fossil fueled power systems. As a promising alternative fuel for next-generation diesel engines that utilize fossil fuel, hydrogen fuel is one step ahead due to its positive properties. In this study, the effects of hydrogen on the performance of a diesel engine have been numerically investigated with respect to different injection ratios and timings. The numerical results of the study for 25% load conditions on a single-cylinder, four-stroke diesel engine have been validated against experimental data taken from literature and good agreement has been observed for pressure results. Emission parameters such as NOx, CO and performance parameters such as cylinder temperature, pressure, power, thermal efficiency and IMEP are presented comparatively.The results of numerical analyses show that the maximum pressure, temperature and heat release rate are observed with injection ratio of H15 and early injection timing (20° CA BTDC). Besides that, engine power, thermal efficiency and IMEP are greatly improved with increasing injection ratio and early injection timing. Although combustion chamber performance parameters improve with rising the hydrogen injection ratio, higher NOx emissions have also been detected as a negative side effect. Furthermore, while early injection timing increases diesel engine performance, it also causes an increase in NOx emissions. Therefore, precise determination of injection timing together with the optimum amount of hydrogen has revealed that it brings crucial improvement in engine performance and emissions.  相似文献   

14.
The objective of the present study is to evaluate the performance, combustion, and emission characteristics of a compression-ignition engine using hydrogen-compressed natural gas (HCNG)-enriched Kusum seed biodiesel blend (KSOBD20). The flow rate of HCNG was set at 5, 10, and 15 liters per minute (lpm), and the injection pressure was varied in the range of 180–240 bar. Brake thermal efficiency (BTE) and brake-specific fuel consumption (BSFC) were improved when HCNG was added to the KSOBD20. Combustion characteristics, namely, cylinder pressure (CP) and net heat release rate (NHRR), were also improved. Emissions of carbon monoxide (CO), hydrocarbons (HC), and smoke were also reduced, with the exception of nitrogen oxides (NOx). The higher injection pressure (240 bar) had a positive effect on operating characteristics. At an injection pressure of 240 bar, for KSOB20 + 15 lpm HCNG, the highest BTE and the lowest BSFC were found to be 32.09% and 0.227 kg/kWh, respectively. Also, the CP and NHRR were 69.34 bar and 66.04 J/deg. CO, HC, and smoke levels were finally reduced to 0.013%, 47 ppm, and 9%, respectively, with increased NOx levels of 1623 ppm. For optimum results in terms of engine characteristics, the fuel combination KSOBD20 + 15 lpm HCNG at fuel injection pressure 240 bar is recommended. Thus, HCNG-enriched KSOBD20 can be used as an alternative fuel in diesel engines without requiring any modifications to increase performance and reduce emissions.  相似文献   

15.
The injection and spray characteristics of a diesel engine with 7.4‐kW rated power output for use of different karanja biodiesel blends (B10 and B20) are studied for identifications of further scope of performance improvement and emission reduction. The dynamic injection timing advanced for the biodiesel blends resulting in higher NOx emission, which increased from 2.94 g/kW‐hour with base diesel to 3.40 g/kW‐hour with B20. At the rated load, the dynamic injection timing advanced from 9.2 deg. crank angle before top dead centre (CA BTDC) with base diesel to 9.3 and 9.4 deg. CA BTDC for B10 and B20, respectively. The in‐line injection pressure increased from 460 bar with base diesel to 480 bar with B20, and in‐cylinder injection duration also increased from 9.5 deg. CA with base diesel to 10.2 deg. CA with B20. The penetration distance increased from 33.37 mm with base diesel to 34.80 mm and 34.25 mm with B10 and B20, respectively. Sauter mean diameter (SMD) increased from 11.39 µm with base diesel to 12.71 and 17.09 µm for B10 and B20, respectively, at the rated load. Air entrainment increases for the biodiesel blends, and it enhances the mixing rate of injected fuel with surrounding hot air. Vaporization time of biodiesel droplets increases because of larger SMD. However, increase in over penetration distance, large SMD and high vaporization time for the biodiesel blends would lead to deteriorated performance and emission characteristics of diesel engines. The remedial measures of spray characteristics for further performance improvement and emission reduction also are highlighted in the paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Using nonedible waste frying oil (WFO) as biodiesel and hydrogen in the mix composition may partly replace significant quantities of diesel fuel and help reduce fossil fuel reliance. The combination of diesel fuel, waste-fired biodiesel, and hydrogen gas can improve the performance, combustion, and emissions of single-fuel and dual-fuel diesel engines. This may lead to a novel alternative fuel mix pattern and modification for diesel engines, which is the research gap. Although there has been some research on waste-fired biodiesel and hydrogen gas-powered dual-fuel engines with the goal of partly replacing fossil fuels to a larger degree, there has been very little progress in this area. As a result, the current research effort focuses on using diesel fuel (100%, 30%, and 60%), waste-fired biodiesel (at 100%, 70%, and 40%), and hydrogen gas as fuel sources (5 and 10 liters per minute [LPM]). According to the current experiment, it was perceived in both dual-fuel and single-fuel modes. Under duel-fuel mode, the engine results for WFOB70D30 + H10 fuel blend had higher 4.2% (brake thermal efficiency [BTE]), 19.72% (oxides of nitrogen [NOx]), and 9.09% (ignition delay [ID]) with a minimal range of (in-cylinder pressure, MFB, volumetric efficiency and heat release rate [HRR]) and a dropped rate of 4.34% (brake-specific energy consumption [BSEC]), 33.33% (carbon monoxide [CO]), 39.28% (hydrocarbons [HC]), 9.43% (smoke), and 6.97% (combustion duration [CD]) related to diesel fuel at peak load. However, single-fuel powered diesel engines provide minimal performance for the WFOB40D60 fuel blend with (11.32% lower BTE and 2.04% higher BSEC) and minimal rate of combustion (lower cylinder pressure, 2.12% minimal CD, 14.72% higher ID, minimal HRR combustion, volumetric efficiency, and MFB). Emitted fewer emissions (9.09% less CO, 4.87% less HC, 0.92% higher NOx, and 1.69% more smoke) than diesel fuel at peak load. Therefore, it was concluded that adding 10 LPM of hydrogen gas to the biodiesel under a dual-fuel condition leads to better combustion, better performance, and less pollution than the single-fuel mode of operation.  相似文献   

17.
Important injection parameters such as fuel injection timing (FIT) and fuel injection pressure (FIP) on different piston bowl geometries substantially impact the performance, emissions, and combustion characteristics of a common rail direct injection engine. The aim of this study deals with the effects of piston bowl geometry (hemispherical bowl [HSB], troded bowl [TRB], and re-entrant bowl [REB]), FIP (200, 220, and 240 bar), and variable FIT (20, 24, and 28°bTDC) with hydrogen-diesel/1-pentanol (B20) (80% diesel and 20% pentanol) with a constant flow rate of hydrogen at 12 Lpm. Furthermore, to decrease emission standards and energy consumption, biodiesel and hydrogen are the ideal substitutes for conventional fuels. REB outperforms HSB and TRB in terms of brake thermal efficiency (5.67%) and hydrocarbon (8% reduction), increasing the FIP at full load (240 bar). However, with the increase in the FIP in the REB, a slight reduction in nitrogen oxide (NOx) emissions (2%) is observed. With an increase in FIP in the case of REB, net heat release rate, peak pressure (in-cylinder), and rate of pressure rise all rise significantly by 3.4%, 4.2%, and 2.3%. NOx emissions are marginally enhanced with higher FIP and advanced FIT. It is found that changing the piston shape and FIP simultaneously is a potential alternative for improving engine performance and lowering emissions.  相似文献   

18.
《Biomass & bioenergy》2001,20(4):317-325
Biodiesel is an alternative fuel consisting of the alkyl monoesters of fatty acids from vegetable oils or animal fats. Previous research has shown that biodiesel-fueled engines produce less carbon monoxide, unburned hydrocarbons, and particulate emissions compared to diesel fuel. One drawback of biodiesel is that it is more prone to oxidation than petroleum-based diesel fuel. In its advanced stages, this oxidation can cause the fuel to become acidic and to form insoluble gums and sediments that can plug fuel filters. The objective of this study was to evaluate the impact of oxidized biodiesel on engine performance and emissions. A John Deere 4276T turbocharged DI diesel engine was fueled with oxidized and unoxidized biodiesel and the performance and emissions were compared with No. 2 diesel fuel. The neat biodiesels, 20% blends, and the base fuel (No. 2 diesel) were tested at two different loads (100 and 20%) and three injection timings (3° advanced, standard; 3° retarded). The tests were performed at steady-state conditions at a single engine speed of 1400 rpm. The engine performance of the neat biodiesels and their blends was similar to that of No. 2 diesel fuel with the same thermal efficiency, but higher fuel consumption. Compared with unoxidized biodiesel, oxidized neat biodiesel produced 15 and 16% lower exhaust carbon monoxide and hydrocarbons, respectively. No statistically significant difference was found between the oxides of nitrogen and smoke emissions from oxidized and unoxidized biodiesel.  相似文献   

19.
With an alarming enlargement in vehicular density, there is a threat to the environment due to toxic emissions and depleting fossil fuel reserves across the globe. This has led to the perpetual exploration of clean energy resources to establish sustainable transportation. Researchers are continuously looking for the fuels with clean emission without compromising much on vehicular performance characteristics which has already been set by efficient diesel engines. In this study, the combustion, performance and emission characteristics of CRDI diesel engine assisted CNG dual fuel research engine operated at constant speed of 1500 rpm with variable engine load (16, 20 and 24 NM) to analyses the influence of fuel injection timings (7.5, 12.5 and 17.5 SOI) and fuel injection pressure (500, 750 and 1000 bar) under reactivity-controlled compression ignition (RCCI) mode. In the case of a fuel injection pressure of 1000 bar, the maximum brake specific fuel consumption of 0.42 kg/kWh is registered with a brake mean effective pressure of 3.2 bar. Response surface methodology has been used in this analysis for predicting the optimal input parameters (engine load, fuel injection timing, and fuel injection pressure), which results in an optimal combination of performance (BP, BTHE, and BSFC) and emission (HC, NOx, and CO) parameters. A variety of optimal solutions based on the desirability method is obtained from the model, and optimal input parameters is suggested as load 20(Nm), injection pressure 750(Bar), and injection timing (BTDC) 12.5. Additionally, to obtain a ‘regression model’ a statistically significant test (ANOVA) is developed. Results have shown that the suggested ‘Regression Model’ is best fitted to 0.095 standard deviations, 0.972 corrected R2, and 18.482 acceptable accuracy.  相似文献   

20.
This article presents a comprehensive overview of methanol as a potential oxygenated fuel for internal combustion engines. Here two approaches have been examined to evaluate the utilization of methanol, namely blending with diesel/biodiesel/methanol and premixing with intake air or fumigation. In conventional compression ignition engines, up to 95% and 25% diesel can be replaced by methanol through fumigation and blending, respectively. Higher latent heat of vaporization of alcohol led to lower peak in-cylinder pressure and NOx; however, it negatively affects thermal efficiency and hydrocarbon and carbon monoxide emissions. Fumigation of alcohol requires modifications in the existing engine, whereas blending needed surfactants or additives to produce stable alcohol–diesel blends. High injection pressure and late direct injection, methanol–diesel blends have shown lower emissions and proved their potential as a suitable replacement for ethanol–diesel blends from the components durability perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号