首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exploring stable catalysts with an efficient hydrogen evolution reaction (HER) arises intense concerns due to its renewable and low-cost properties. In this work, we have systematically investigated a two-dimensional (2D) material, namely, B4N monolayer as efficient HER electrocatalysts based on first-principles computations. When the material is metal-free, the calculated Gibbs free energy (ΔGH1) corresponding to hydrogen coverages of 2/4 reaches to 0.005 eV, which is better than that of the Pt catalyst. Moreover, we also find that the HER activity of the B4N monolayer is sensitive to the strains-driven. The single metal atom supported on B4N can still make the value of ΔGH1 close to 0 eV for Cr/B4N and V/B4N. These results reveal that the B4N monolayer is a promising candidate for HER applications.  相似文献   

2.
The development of effective and non-precious electrocatalyts for hydrogen evolution reaction (HER) has attracted massive research interests. Herein, we report a density functional theory (DFT) investigation on the activation and optimization of Molybdenum disulfide (MoS2) monolayer as efficient HER electrocatalysts by cobalt-nonmetal atom (X = B, C, N, P, Se) codoping. Our results show that three CoX-MoS2 (X = C, N, and Se) catalysts display enhanced HER performance with |ΔGH|s in the range of 0.12–0.23 eV. Careful electronic structure analysis manifests that the favorable H adsorption process on the MoS2 basal plane is induced by suitable in-gap states upon codoping. Furthermore, appropriate biaxial strain can help optimize the HER performance of these co-doped systems, e.g, the ΔGHs of CoC@MoS2, CoN@MoS2, and CoSe@MoS2 reaches 0.0 eV, ?0.04 eV, and ?0.01 eV at 1.86% tensile strain, 5% compressive strain, and 4% compressive strain, respectively. Our work offers a highly promising catalyst for HER and guides the atomic design of more efficient non-noble electrocatalysts.  相似文献   

3.
Considerable efforts have been made to enhance the hydrogen evolution reaction (HER) catalytic performance of Janus MoSSe monolayer, which have been considered to be a promising candidate due to the unique asymmetry structure. However, the activation effect remains non-optimal for the inert Janus MoSSe basal plane at present. Herein, a train of transition metal (TM) atoms were anchored on the S-/Se-/Mo-defective MoSSe basal plane to screen effective TM single-atom catalysts for HER through density functional theory (DFT) computations. Interestingly, the single Co atom anchored on Mo-defective MoSSe and the single Zn or Cd atom anchored on S-defective MoSSe were judged to possess excellent HER performance yielding a near-zero ΔGH (ΔGH = ?0.050, ?0.095, ?0.098 eV, respectively), which is comparable to the optimized Pt-SACs. The enhanced HER activity is attributed to the doping of TM atoms (Co, Zn and Cd) which improves the conductivity of the original MoSSe and offers unoccupied states near the Fermi level decreasing the energy barrier of electrons transfer between H and TMs@MoSSe surface. In addition, the change of unoccupied antibonding states of active atoms leads to appropriate interaction between the active sites and H. The hybridization between H-s orbital and the TMs@MoSSe systems around the Fermi level also suggests the formation of stable bonding-antibonding hydrogen adsorption states. This work reveals an effective way of activating MoSSe basal plane for HER.  相似文献   

4.
It is well known that the development of dual-purpose materials is more significant and valuable than single-use materials due to the diversity of their use purposes. Based on density functional theory (DFT), the hydrogen evolution/hydrogen storage characteristics of two-dimensional (2D) B7P2 monolayer are systematically studied in this paper, focusing on the key word of clean energy-“hydrogen”. The results show that the B7P2 monolayer can be used as a stable metal-free decorated catalyst for hydrogen evolution reaction (HER), which is renewable and environmentally friendly. The calculated Gibbs free energy (ΔGH1) is 0.06 eV, which is comparable or even better than that of Pt catalyst (ΔGH1 = ?0.09 eV). In addition, we also found that the increase of hydrogen coverage and strain driving (?2%–2%) did not further enhance the HER activity of B7P2 monolayer, showing a poor ΔGH1. In the aspect of hydrogen storage, we have investigated the hydrogen storage performances of alkali-metal (Li, Na and K) doped B7P2. It is found that in the fully loaded case, B7P2Li6 is a promising hydrogen storage material with a 7.5 wt% H2 content and 0.15 eV/H2 average hydrogen adsorption energy (Eave). Moreover, ab initio molecular dynamics (AIMD) calculations show that there is no dynamic barrier for H2 desorption of Li-decorated B7P2 monolayer. In conclusion, our results indicate that the B7P2 monolayer is not only an excellent catalyst for HER, but also a promising hydrogen storage medium.  相似文献   

5.
At present, the precious metal Pt is a common catalyst for large-scale hydrogen evolution reaction (HER) production of hydrogen, but due to its high price and scarcity, finding an innovative catalyst has become the key to electrocatalytic hydrogen evolution. Here, the HER electrocatalytic activity of Janus MoXTe (X = S, Se) monolayers was investigated through first-principles calculations. Mo vacancy, X vacancy and Te vacancy were introduced into 2H, 1T, and 1T’ phase respectively and their stability was studied. The results show that the introduction of vacancy can improve the electrocatalytic hydrogen evolution performance. Particularly, the Gibbs free energies (ΔGH) of Te vacancy of 2H phase MoSTe and MoSeTe are close to zero (ΔGH = 0.03, −0.05 eV, respectively), and has the highest exchange current density. We further find that the conductivity of 2H phase MoSTe and MoSeTe is enhanced after introducing Te vacancy. In details, H get 1.86 and 1.43 e on VTe in 2H phase MoSTe and MoSeTe. The bond between S and H is more stable, H is better adsorbed on the catalyst, and the performance is improved. Our research provides a strategy for designing MoXTe monolayer electrocatalysts, which are predicted to be employed in HER catalysts with low cost and high performance.  相似文献   

6.
The biggest challenge in the commercial application of electrochemical reduction of water through the hydrogen evolution reaction (HER) is hampered due to the scarcity of inexpensive and efficient catalysts. Herein, we propose a metal-free biphenylene nanosheet, a recently proposed two-dimensional (2D) carbon allotrope, as an excellent HER electrocatalyst. The dynamical and thermal stability of biphenylene nanosheet is validated through phonon dispersion and abinitio molecular dynamics (AIMD) calculations, respectively. At a low H coverage (1/54), the biphenylene nanosheet shows excellent catalytic activity with the Gibbs free energy (ΔGH1) of 0.082 eV. The Bdoping and C-vacancy in biphenylene further improve ΔGH1 to −0.016 eV and 0.005 eV, respectively. The interactions between the H atom and the nanosheet are explained through the relative position of the p-band center. Our study opens new possibilities to use non-metallic porous materials as highly efficient electrocatalysts for HER.  相似文献   

7.
Molybdenum disulfide (MoS2) has been considered a promising high-efficiency, low-cost hydrogen evolution reaction (HER) catalyst in acidic and alkaline media. However, the lack of active sites in the basal plane become the most significant obstacle hindering the widespread application of MoS2. Here, we systematically studied the HER performance of MoS2 plane or edge by co-doping Co atom and other 3d transition metals (TM = Ti–Fe, Ni) by density functional theory calculation methods. Interestingly, the dual atoms doping in both the basal plane and edges of MoS2 is a feasible fabrication with small or negative formation energies. Compared with the pristine MoS2 electrocatalyst, the HER performance in these doped systems is largely enhanced in both basal plane and edges due to the effective charge regulation on the S site by dual atom doping. Remarkably, close to zero H adsorption free energy (ΔGH = ?0.161–0.119 eV) is identified for the TM-Co co-doped MoS2 basal, indicating that they are potential alternate HER electrocatalysts of Pt. Our study provides a new strategy to design highly efficient non-noble metal electrocatalysts accessibility for energy-related applications.  相似文献   

8.
Chromic oxide (Cr2O3) monolayer is a promising alternative hydrogen evolution reaction (HER) catalyst compared with expensive platinum (Pt) due to its advantages such as low cost, large specific surface area, high reserves, and designability. In this study, the two practical strategies, strain engineering and transition metal (TM) doping (Mn, Fe, Zn, etc.), are proposed to activate the catalytic sites of Cr2O3 monolayer for the HER. The density functional theory (DFT) calculations demonstrate that the strained Cr2O3 monolayer can stimulate the HER activity with the Gibbs free energy of hydrogen adsorption (ΔGH1) close to 0.09eV, which can be considered as a performable strategy to tune the HER catalytic behavior of Cr2O3 monolayer. For the TM doping, it also plays a role in the performance adjustment. These results provide a guideline to optimize the HER performance of Cr2O3 monolayer.  相似文献   

9.
In this work, the catalytic activity towards hydrogen evolution reaction (HER) was studied for hydrogen adsorption on Pt doped Fe2C (001) surface configuration (Pt/Fe2C) and compared with pure Pt (001). The adsorption of H on the pristine Fe2C, Pt doped Fe2C, and pure Pt in (001) slab was computed. The best and promising HER activity (ΔGH1 = −0.02 eV) is obtained at the hollow site adsorption of Pt/Fe2C (Fe13Pt3C8) compared to the experimental value of pure Pt (ΔGH1 = −0.09 eV) suggesting the possibility of the H2 formation on the surface of Fe13Pt3C8. The structural stabilities of Fe2C and Pt/Fe2C were investigated by the formation energy analysis. Also, it is observed that to enhance the HER mechanism, the modification of the d-electron structure of Pt atoms is essential which can be achieved by the increased Pt doping. The Bader charge analysis demonstrated the charge transfer between the substrate and the adsorbed H atoms. The density of states (DOS) of pure Fe2C and optimal Pt/Fe2C were calculated which revealed the magnetic and metallic nature of these materials. In addition, the adsorption and resulted activation of H2 were facilitated by the elongation of H–H bond length in Fe13Pt3C8. This work supports the HER over single atom catalysts (SACs) with lower Pt loading but with high catalytic activity and the maximum atom utilization of SACs.  相似文献   

10.
Searching electrocatalysts with excellent hydrogen evolution reaction (HER) performance is very important for developing clean hydrogen energy. Two-dimensional (2D) materials have been widely studied as HER electrocatalysts, however, the basal planes of 2D materials, which dominate the surface area, are usually with poor activity. In this work, we theoretically studied the HER activity of Janus 2H–VSSe with or without non-noble metal element doping. Density functional theory (DFT) calculations suggest that doping As and Si atoms in the S or Se sites of VSSe and the C and Ge atoms in the Se site of VSSe greatly promote the HER performance of the basal plane of VSSe, resulting in hydrogen adsorption free energy close to zero (i.e. ?0.022, ?0.040, 0.066, 0.065, ?0.030, 0.058 eV, respectively), which are better than the Pt catalyst (?0.09 eV). The doped atoms strengthen the interaction between their pz-orbital and the hydrogen s-orbital, resulting in a lower bonding state in energy and higher bind strength for the hydrogen atom. This work opens up a new way to design highly efficient and low-cost catalysts for HER.  相似文献   

11.
Electrochemical water splitting to hydrogen is considered as a promising approach for clean H2 production. However, developing highly active and inexpensive electrocatalysts is an important part of the hydrogen evolution reaction (HER). Herein, we present a multifaceted atom (sp2-and sp-hybridized boron) doping strategy to directly fine-modify the electronic structures of the active site and the HER performance by the density functional theory calculations. It is found that the binding strength between the Co atom and the B doped graphyne nanosheets can be enhanced by doping B atoms. Meanwhile, the Co@B1-GY and Co@B2-GY catalysts exhibit good thermodynamic stability and high HER catalytic activity. Interestingly, the Co@B2-GY catalyst has an ideal HER performance with the ΔGH* value of −0.004 eV. Moreover, the d-band center of the Co atoms is upshifted by the sp2-or sp-hybridized B dopants. The concentrations of the sp-hybridized B atoms have a positive effect on the electrons transformation of the Co atoms. The interaction between the H and Co atoms becomes strong with the increase of the concentrations of the sp-hybridized B atoms and thus the corresponding catalysts show sluggish HER kinetics. This investigation could provide useful guidance for the experimental groups to directly and continuously control the catalytic activity towards HER by precisely doping multifaceted atoms.  相似文献   

12.
Molybdenum carbide (Mo2C) has high catalytic activities toward electrocatalytic hydrogen evolution reaction (HER) owing to its high surface activity and electrochemical properties. However, the defects modification of Mo2C, which plays an important role in the HER activity, is relatively scarce in the theoretical research. Herein, in this work, based on first-principles calculations, we screen the influences of vacancies, nonmetal doping (XC/T, X = N, O, F, P and S) and metal substitutional doping (YMo, Y = Re and W) on HER of two-dimensional Mo2C. The results reveal that vacancies of Mo6C (0.02 eV) and Mo3C (0.22 eV), substitutional dopants of OC, SC, ReMo (?0.33~0.08 eV) and adsorptive dopants of NT, FT, PT, ST (?0.26~0.14 eV) show enhanced catalytic activity with the absolute value of hydrogen adsorption free energy (ΔGH1) smaller than 0.33 eV. A negative linear relationship is observed between ΔGH1 and d band center of transition metals in vacancies and metal dopants, but not in the configurations with nonmetal doping. The results provide more insight and guidance for the design of Mo2C electrocatalyst.  相似文献   

13.
In this paper, first-principle calculations based on density functional theory (DFT) were used to investigate the performance and mechanism of the hydrogen evolution reaction (HER) on the typical active (001) facet of the novel electrocatalyst Ni2B. There were two types of atomic distribution on the Ni2B (001) surface, namely the B-rich surface and the Ni-rich surface. The investigation of the reaction mechanism revealed that the Volmer-Heyrovsky mechanism was easier to be realized on this Ni2B (001) facet, and the Heyrovsky reaction was the reaction rate-determining step. The Gibbs free energy(ΔGH) on the B-rich surface was - 0.02 eV, which was closer to 0 eV than that on the Ni-rich surface of Ni2B (001). The HER reactivity on the Ni-rich surface was increased by Cr-doping (ΔGH = - 0.01 eV), which indicated that the introduction of other transition metal atoms might effectively increase the HER electrocatalysis activity of Ni2B (001) surface. This work paves a new avenue for exploring efficient and durable non-precious metal electrocatalysts for HER in acidic medium.  相似文献   

14.
Searching for the catalysts with excellent catalytic activity and high chemical stability is the key to achieve large-scale production of hydrogen (H2) through hydrogen evolution reaction (HER). Two-dimensional (2D) platinum and palladium dichalcogenides with extraordinary electrical properties have emerged as the potential candidate for HER catalysts. Here, chemical stability, HER electrocatalytic activity, and the origin of improved HER performance of Pt/Pd-based dichalcogenides with single-atom doping (B, C, N, P, Au, Ag, Cu, Co, Fe, Ni, Zn) and vacancies are explored by first-principles calculations. The calculated defect formation energy reveals that most defective structures are thermodynamically stable. Hydrogen evolution performance on basal plane is obviously improved by single-atoms doping and vacancies. Particularly, Zn-doped and Te vacancy PtTe2 have a ΔGH value close to zero. Moreover, defect engineering displays a different performance on HER catalytic activity in sulfur group elements, in order of S < Te < Se in Pd-based chalcogenides, and S < Se < Te in Pt-based chalcogenides. The origin of improved hydrogen evolution performance is revealed by electronic structure and charge transfer. Our findings of the highly activating defective systems provide a theoretical basis for HER applications of platinum and palladium dichalcogenides.  相似文献   

15.
In this work, a detailed investigation of the structural and electronic properties and hydrogen evolution reaction (HER) activity of the pristine, vacancy and carbon (C) doped o-B2N2 monolayer is carried out using first-principles based density functional theory. The creation of vacancy and C doping modulates structural and electronic properties of the monolayers and enhances the HER activity of o-B2N2. The BN vacancy defect, C doping at B and N sites in the monolayer enhances the magnitude of HER activity by 77.34%, 86.71% and 83.59% as compared to pristine monolayer. The modulation in the HER activity of the o-B2N2 is due to the redistribution of charge after induction of vacancy and dopant. Our results suggest that the C doping makes o-B2N2 metallic which can be utilized as an “electrocatalyst” whereas BN vacancy defected o-B2N2 monolayer is semiconducting with a band gap of ~1 eV and can be used as “photocatalyst” for HER activity.  相似文献   

16.
Solute hydrogen trapping has long been proposed as one of the mechanisms for hydrogen embrittlement in steel. It has been reported that the maximum hydrogen trapping energy of metallic solutes ranged from ?0.7 eV to ?0.9 eV. In this work, the mechanism of metal-H interaction in Cr-Mo steels was investigated with first principles calculations by modelling the binary alloy Fe-X (X = C, Si, Mn, Cr, Mo) system with reference to the chemical composition of Cr-Mo steels. The formation of hydrogen bonds in the case of H atoms located at different sites in Fe-X crystals was analyzed. Results indicated that various atomic doping had different roles in hydrogen effect in the steel, with C, Si and Mo doping making the solid solution of hydrogen in Fe crystals easier, while Mn and Cr doping was rather more difficult. In Fe-Mn and Fe-Cr crystals, the repulsion between Fe lattices was insignificant when H atoms were located in tetrahedral sites, which considerably reduced the binding energy in the crystal. When H atoms were dissolved into the crystal, the interatomic bonding interactions in Fe-X crystals were weakened, resulting in higher charge density fluctuations. The current work extends the understanding of H-atom diffusion and migration in steel from the microscopic scale to the atomic and electronic scales, which underpins the physics for tailoring chemical elements of bcc metals towards higher resistance to hydrogen embrittlement.  相似文献   

17.
The electrocatalytic water splitting consists of two half-reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), which require low-cost and highly activity catalysts. Two-dimensional transition metal carbon-nitride (MXenes) are considered as the potential catalysts candidates for HER and OER due to their unique physical and chemical properties. In this work, using density functional theory (DFT), we have investigated the effect of single non-metal (NM, NM = B, N, P, and S) atoms doping, strain, and terminal types on the HER and OER activities of V2CO2 MXene. Results indicated that P doping V2CO2 (P/V2CO2) has best HER performance at hydrogen coverage of θ = 1/8, and N doping V2CO2 (N/V2CO2) has best OER performance among the studied systems. In addition, it can be found that there is a strong correlation between the ΔGH and strain, ΔGH and valence charges of the doped atoms after applying strain to the doping structures, with the correlation coefficient (R2) about equal 1. Moreover, the mixed terminal can enhance the performances of HER and OER, which obey the follow rules: mixed terminal (O1 and 1OH) > original terminal (O1) > 1OH terminal. The ab initio molecular dynamics simulations (AIMD) results revealed that the single non-metallic doped structures are stable and can be synthesized experimentally at different terminals.  相似文献   

18.
19.
Rapid advances in the field of catalysis require a microscopic understanding of the catalytic mechanisms. However, in recent times, experimental insights in this field have fallen short of expectations. Furthermore, experimental searches of novel catalytic materials are expensive and time-consuming, with no guarantees of success. As a result, density functional theory (DFT) can be quite advantageous in advancing this field because of the microscopic insights it provides and thus can guide experimental searches of novel catalysts. Several recent works have demonstrated that low-dimensional materials can be very efficient catalysts. Graphene quantum dots (GQDs) have gained much attention in past years due to their unique properties like low toxicity, chemical inertness, biocompatibility, crystallinity, etc. These properties of GQDs which are due to quantum confinement and edge effects facilitate their applications in various fields like sensing, photoelectronics, catalysis, and many more. Furthermore, the properties of GQDs can be enhanced by doping and functionalization. In order to understand the effects of functionalization by oxygen and boron based groups on the catalytic properties relevant to the hydrogen-evolution reaction (HER), we perform a systematic study of GQDs functionalized with the oxygen (O), borinic acid (BC2O), and boronic acid (BCO2). All calculations that included geometry optimization, electronic and adsorption mechanism, were carried out using the Gaussian16 package, employing the hybrid functional B3LYP, and the basis set 6-31G(d,p). With the variation in functionalization groups in GQDs, we observe significant changes in their electronic properties. The adsorption energy Eads of hydrogen over O-GQD, BC2O-GQD, and BCO2-GQD is ?0.059 eV, ?0.031 eV and ?0.032 eV respectively. Accordingly, Gibbs free energy (ΔG) of hydrogen adsorption is extraordinarily near the ideal value (0 eV) for all the three types of functionalized GQDs. Thus, the present work suggests pathways for experimental realization of low-cost and multifunctional GQDs based catalysts for clean and renewable hydrogen energy production.  相似文献   

20.
Due to the synergistic effect between transition metals and hetero-atoms, transition metal-phosphide-based composites have been used as electrode materials for electrocatalytic hydrogen evolution reactions (HER) and supercapacitors, but their ideal performance has yet to be achieved. Herein, the binary transition metal phosphides, CoMoP and NiMoP, were grown on Ni-foam using a two-step hydrothermal approach and phosphorus deposition in a tube furnace. Both the CoMoP and NiMoP materials showed promising HER activity, displaying an overpotential of 137 mV and 144 mV @10 mA/cm2, respectively. The theoretical studies demonstrated that the ΔGH1 on CoMoP (?0.28 eV) was closer to zero than on NiMoP (?0.34 eV), due to the synergistic Co–P bonding, making it more accessible for H-adsorption, thereby endowing HER. In addition, the CoMoP and NiMoP materials exhibited 3507 F/g and 930 F/g energy storage capacities, respectively. Moreover, both samples had close to 100% Coulombic efficiency and about 50% capacitance retention. Based on these findings, it looks like CoMoP could be good for both the HER and supercapacitor electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号