首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
We have developed a hydrogen (H2) refueling solution capable of delivering precooled, compressed gaseous hydrogen for heavy duty vehicle (HDV) refueling applications. The system uses a submerged pump to deliver pressurized liquid H2 from a cryogenic storage tank to a dispensing control loop that vaporizes the liquid and adjusts the pressure and temperature of the resulting gas to enable refueling at 35 MPa and temperatures as low as ?40 °C. A full-scale mobile refueler was fabricated and tested over a 6-month campaign to validate its performance. We report results from tests involving a total of 9000 kg of liquid H2 pumped and 1350 filling cycles over a range of conditions. Notably, the system was able to repeatably complete multiple, back-to-back 30 kg filling cycles in under 6 min each, in full compliance with the SAE J2601-2 standard, demonstrating its potential for rapid-throughput HDV refueling applications.  相似文献   

2.
Recent progress in submerged liquid hydrogen (LH2) cryopump technology development offers improved hydrogen fueling performance at a reduced cost in medium- and heavy-duty (MDV and HDV) fuel cell vehicle refueling applications at 35 MPa pressure, compared to fueling via gas compression. In this paper, we evaluate the fueling cost associated with cryopump-based refueling stations for different MDV and HDV hydrogen demand profiles. We adapt the Heavy Duty Refueling Station Analysis Model (HDRSAM) tool to analyze the submerged cryopump case, and compare the estimated fuel dispensing costs of stations supplied with LH2 for fueling Class 4 delivery van (MDV), public transit bus (HDV), and Class 8 truck (HDV) fleets using cryopumps relative to station designs. A sensitivity analysis around upstream costs illustrates the trade-offs associated with H2 production from onsite electrolysis versus central LH2 production and delivery. Our results indicate that LH2 cryopump-based stations become more economically attractive as the total station capacity (kg dispensed per day) and hourly demand (vehicles per hour) increase. Depending on the use case, savings relative to next best options range from about 5% up to 44% in dispensed costs, with more favorable economics at larger stations with high utilization.  相似文献   

3.
The extensive population growth calls for substantial studies on sustainable development in urban areas. Thus, it is vital for cities to be resilient to new situations and adequately manage the changes. Investing in renewable and green energy, including high-tech hydrogen infrastructure, is crucial for sustainable economic progress and for preserving environmental quality. However, implementing new technology needs an effective and efficient risk assessment investigation to minimize the risk to an acceptable level or ALARP (As low as reasonably practicable). The present study proposes an advanced decision-making framework to manage the risk of hydrogen refueling station leakage by adopting the Bow-tie analysis and Interval-Value Spherical Fuzzy Sets to properly deal with the subjectivity of the risk assessment process. The outcomes of the case study illustrate the causality of hydrogen refueling stations' undesired events and enhance the decision-maker's thoughts about risk management under uncertainty. According to the findings, jet fire is a more likely accident in the case of liquid hydrogen leakage. Furthermore, equipment failure has been recognized as the most likely cause of hydrogen leakage. Thus, in order to maintain the reliability of liquid hydrogen refueling stations, it is crucial that decision-makers develop a trustworthy safety management system that integrates a variety of risk mitigation measures including asset management strategies.  相似文献   

4.
Hydrogen refueling is an essential infrastructure for fuel cell vehicles, and currently, it appears to be a critical service needed to initiate the highly anticipated hydrogen economy in China. A practical selecting procedure of adding hydrogen refueling service to existing natural gas (NG) stations is proposed in this study. A case study in Wuhan, China, is established to assess the feasibility and future planning. The demand for hydrogen fuel and initial supply chain of hydrogen in Wuhan are estimated based on the deployment objective of fuel cell buses. The existing NG stations are evaluated based on 300 kg/day to determine whether they meet the hydrogen safety requirement using Google map or field investigation. The safety space requirement of the hydrogen refueling area on existing NG station is determined as 25.9 × 27.1 m2. The optimal hydrogen refueling plan for fuel cell buses is calculated with multi‐objective analysis in economic, environmental, and safety aspects from the view of the hydrogen refueling supply chain. It is shown that adding hydrogen refueling stations to existing NG stations is feasible in technology, economics, regulation, and operation considerations. This study provides guidelines for building the hydrogen infrastructure for fuel cell buses at their early stage of commercial operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号