首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Development of efficient hydrogen refueling station (HRS) is highly desirable to reduce the hydrogen cost and hence the life cycle expense of fuel cell vehicles (FCVs), which is hindering the large scale application of hydrogen mobility. In this work, we demonstrate the optimization of gaseous HRS process and control method to perform fast and efficient refueling, with reduced energy consumption and increased daily fueling capacity. The HRS was modeled with thermodynamics using a numerical integration method and the accuracy for hydrogen refueling simulation was confirmed by experimental data, showing only 2 °C of temperature rise deviation. The refueling protocols for heavy duty FCVs were first optimized, demonstrating an average fueling rate of 2 kg/min and pre-cooling demand of less than 7 kW for 35 MPa type III tanks. Fast refueling of type IV tanks results in more significant temperature rise, and the required pre-cooling temperature is lowered by 20 K to achieve comparable fueling rate. The station process was also optimized to improve the daily fueling capacity. It is revealed that the hydrogen storage amount is cost-effective to be 25–30% that of the nominal daily refueling capacity, to enhance the refueling performance at peak time and minimize the start and stop cycles of compressor. A novel control method for cascade replenishment was developed by switching among the three banks in the order of decreased pressure, and results show that the daily refueling capacity of HRS is increased by 5%. Therefore, the refueling and station process optimization is effective to promote the efficiency of gaseous HRS.  相似文献   

2.
A dynamic model is used to characterize cryogenic H2 storage in an insulated pressure vessel that can flexibly hold liquid H2 and compressed H2 at 350 bar. A double-flow refueling device is needed to ensure that the tank can be consistently refueled to its theoretical capacity regardless of the initial conditions. Liquid H2 charged into the tank is stored as supercritical fluid if the initial tank temperature is >120 K and as a subcooled liquid if it is <100 K. An in-tank heater is needed to maintain the tank pressure above the minimum delivery pressure. Even if H2 is stored as a supercritical fluid, liquid H2 will form as H2 is withdrawn and will further transform to a two-phase mixture and ultimately to a superheated gas. The recoverable fraction of the total stored inventory depends on the minimum H2 delivery pressure and the power rating of the heater. The dormancy of cryogenic H2 is a function of the maximum allowable pressure and the pressure of stored H2; the evaporative losses cannot deplete H2 from the tank beyond 64% of the theoretical storage capacity.  相似文献   

3.
This article examines the problems involved in refueling vehicles with compressed hydrogen at a pressure of up to 87.5 MPa. A procedure for filling fuel tanks adopted by nine automobile manufacturers is presented and its function demonstrated on the basis of a series of application-specific simulation calculations.  相似文献   

4.
Clean energy resources will be used more for sustainability improvement and durable development. Efficient technologies of energy production, storage, and usage results in reduction of gas emissions and improvement of the world economy. Despite 30% of electricity being produced from wind energy, the connection of wind farms to medium and large-scale grid power systems is still leading to instability and intermittency problems. Therefore, the conversion of electrical energy generated from wind parks into green hydrogen consists of an exciting solution for advancing the development of green hydrogen production, and the clean transportation sector. This paper presents a techno-economic optimization of hydrogen production for refueling fuel cell vehicles, using wind energy resources. The paper analyses three configurations, standalone Wind-Park Hydrogen Refueling Station (WP-HRS) with backup batteries, WP-HRS with backup fuel cells, and grid-connected WP-HRS. The analysis of different configurations is based on the wind potential at the site, costs of different equipment, and hydrogen load. Therefore, the study aims to find the optimized capacity of wind turbines, electrolyzers, power converters, and storage tanks. The optimization results show that the WP-HRS connected to the grid has the lowest Present Worth Cost (PWC) of 6,500,000 €. Moreover, the Levelized Hydrogen Cost (LHC) of this solution was found to be 6.24 €/kg. This renewable energy system produces 80,000 kg of green hydrogen yearly.  相似文献   

5.
Cryo-compressed hydrogen storage promises to deliver the highest system storage density leading to practical vehicles with range comparable to today's gasoline vehicles and fundamental cost and safety advantages. However, cryogenic vessels are complex systems, continuously drifting in thermodynamic space depending on use patterns, insulation performance, vessel characteristics, liquid hydrogen pump performance, and para-H2 to ortho-H2 conversion. In this paper, cryogenic vessel fill density results from a previous publication are extended to calculate system storage performance, including volumetric (gH2/L), gravimetric (H2 weight fraction), and vent losses over a broad range of conditions. The results confirm previous experiments and models indicating that cryogenic pressure vessels have maximum system density of all available storage technologies while avoiding vent losses in all but the most extreme situations. Design pressures in the range 250–350 bar seem most advantageous due to high system density and low weight and cost, although determining an optimum pressure demands a complete economic and functional analysis. Future insulation, vessel, and liquid hydrogen pump improvements are finally analyzed that, while not experimentally demonstrated to date, show promise of being feasible in the future as their level of technical maturity increases, leading to maximum H2 storage performance for cryo-compressed storage. If proven feasible and incorporated into future cryogenic vessels, these improvements will enable 50 + gH2/L system density at 10+% H2 weight fraction.  相似文献   

6.
Hydrogen fuel cell vehicle (HFCV) is one of the key contributors to sustainable development of the society. For commercial deployment and market acceptability of fuel cell vehicles, efficient storage of hydrogen with an optimum refueling is one of the important challenge. Compressed hydrogen storage in Type IV tanks is a mature and promising technology for on-board application. The fast refueling of the storage tank without overheating and overfilling is an essential requirement defined by SAE J2601. In this regard, station parameters such as hydrogen supply temperature, filling rate and vehicle tank parameters such as filling time strongly influences the storage capacity of the tank, affecting driving range of the fuel cell vehicle. This paper investigates the impact of these parameters on storage density of the tank defined in terms of state of charge. For this, refueling simulation based on SAE J2601 protocol has been performed using computational fluid dynamic approach to investigate the influence of station parameters on storage density of the tank. Further, the root cause analysis was carried out to investigate the contribution of station and vehicle tank parameters for enhancing the storage density of the tank. Finally, the regression model based on these refueling parameters was developed to predict the density attained at different filling conditions. The results confirmed the strong contribution of pressure, filling time, supply temperature and least contribution of temperature, filling rates in enhancing the storage density of the tank. The results can provide new insight into refueling behavior of the Type IV tank for fuel cell vehicle.  相似文献   

7.
Hydrogen vehicles are already a reality, However, consumers will be reluctant to purchase hydrogen vehicles (or any other alternative fuel vehicle) if they do not perceive the existence of adequate refueling infrastructure that reduces the risk of running out of fuel regularly while commuting to acceptable levels. This fact leads to the need to study the minimum requirements in terms of fuel availability required by drivers to achieve a demand for hydrogen vehicles beyond potential early-adopters.This paper studies consumer preferences in relation to the design of urban hydrogen refueling infrastructure. To this end, the paper analyzes the results of a survey carried out in Andalusia, a region in southern Spain, on drivers' current refueling tendencies, their willingness to use hydrogen vehicles and their minimum requirements (maximum distance to be traveled to refuel and number of stations in the city) when establishing a network of hydrogen refueling stations in a city. The results show that consumers consider the existence in cities of an infrastructure with a number of refueling stations ranging from approximately 10 to 20% of the total number of conventional service stations as a requisite to trigger the switch to the use of hydrogen vehicles. In addition, these stations should be distributed in response to the drivers’ preferences to refuel close to home.  相似文献   

8.
The uncertainty and cost of changing from a fossil-fuel-based society to a hydrogen-based society are considered to be extensive obstacles to the introduction of fuel cell vehicles (FCVs). The absence of existing profitable refueling stations has been shown to be one of the major barriers. This paper investigates methods for calculating an optimal transition from a gasoline refueling station to future methane and hydrogen combined use with an on site small-scale reformer for methane. In particular, we look into the problem of matching the hydrogen capacity of a single refueling station to an increasing demand. Based on an assumed future development scenario, optimal investment strategies are calculated. First, a constant utilization of the hydrogen reformer is assumed in order to find the minimum hydrogen production cost. Second, when considerations such as periodic maintenance are taken into account, optimal control is used to concurrently find both a short term equipment variable utilization for one week and a long term strategy. The result is a minimum hydrogen production cost of $4–6/kg, depending on the number of reinvestments during a 20 year period. The solution is shown to yield minimum hydrogen production cost for the individual refueling station, but the solution is sensitive to variations in the scenario parameters.  相似文献   

9.
The energy transition which refers to shift of the energy system from fossil-based resources to renewable and sustainable energy sources becomes a global issue to mitigate the progression of climate change. Hydrogen can play an important role in long-term decarbonization of energy system and achievement of carbon neutrality. Currently, the utilization of hydrogen in the energy system is focused on a road transportation sector as a fuel in a vehicle fleet.Compressing gaseous hydrogen is the most well-established technology for storage in hydrogen-fueled vehicles. The refueling hydrogen requires short filling time while ensuring the safety of storage tanks in a vehicle. However, a fast filling of hydrogen in high pressure leads to a rapid temperature rise of hydrogen stored in tank. Therefore, many numerical and experimental studies have been carried out to analyze the filling process. Various thermo-physical properties of gaseous hydrogen such as density, viscosity, and thermal conductivity are required for the numerical studies and the accurate hydrogen properties are essential to obtain reliable results.In this work, a polynomial equation is proposed with respect to temperature and pressure in ranges of 223.15 K < T < 373.15 K and 0.1 MPa < P < 100.1 MPa to present various hydrogen thermo-physical properties by adopting different coefficients. The coefficients are determined by a machine learning method to regress the equation using a great number of reference data. The equation is trained, tested, and validated using different datasets for each property. The order of the equation has been changed from 2 to 5. Then, the accuracies are estimated and compared with respect to the order. The average relative errors (REs) of the 5th order equation are assessed to lower than 0.3% except for molar volume and entropy. The accuracy of the equation is also examined with experimental data and other correlation equations for density, viscosity, and thermal conductivity which are required for numerical simulations of hydrogen refueling. The proposed equation presents better accuracy for viscosity and thermal conductivity than literature equations. In density calculation, a literature equation shows better performance than the proposed equation, but the difference between their accuracies is not so significant. In calculation time comparison, it is revealed that the proposed equation rapidly responses adequate to computational fluid dynamics (CFD) simulations.Results of the study can provide accurate and reliable hydrogen property values in a fast and robust means specifically for simulation of hydrogen refueling process, but not restricted only to the process. Correlation equations proposed in the present work can aid in optimizing a hydrogen value chain including production, storage, and utilization by providing accurate hydrogen property.  相似文献   

10.
Hydrogen used in proton exchange membrane-based fuel cell applications is subject to very high quality requirements. While the influences of contaminations in hydrogen on long-term stability have been intensively studied, the purity of hydrogen for mobile applications provided at hydrogen refueling stations (HRS) is rarely analyzed. Hence, in this study, we present sampling of hydrogen at HRS with a specially designed mobile tank for up to 70 MPa. These samples are precisely analyzed with a sophisticated ion molecule reaction mass spectrometer (IMR-MS), able to determine concentrations of contaminants down to the ppb-level. Sampling and analysis of hydrogen at an HRS supplied by electrolysis revealed a high purity, but likewise considerable contaminations above the threshold of the international standard ISO 14687:2019. In this study, a state-of-the-art analysis coupled with a developed methodology for fuel cell electric vehicle-independent sampling of hydrogen with a mobile tank system is demonstrated and applied for comprehensive studies of hydrogen purity.  相似文献   

11.
The final temperature and mass of compressed hydrogen in a tank after a refueling process can be estimated using the analytical solutions of a lumped parameter thermodynamic model of high pressure compressed hydrogen storage system. The effects of three single refueling parameters (ambient temperature, initial pressure and mass flow rate) and three pairs of the refueling parameters on the final hydrogen temperature are studied, for both 35 MPa and 70 MPa tanks. Overall expressions for the final hydrogen temperature, expressed as a function of the three factors, are obtained. The formulae for the final hydrogen temperature provide an excellent representation of the reference data. The effects of the refueling parameters (mass flow rate, initial pressure and inflow temperature) on the final hydrogen mass are determined from the physical model. An overall expression of the final hydrogen mass is also obtained. The final hydrogen temperature can be controlled by reducing the ambient temperature or the mass flow rate, or increasing the initial pressure. The final hydrogen mass can be maximized by reducing the mass flow rate or the inflow temperature, or increasing the initial pressure. This study provides simple engineering formulae to assist in establishing refueling protocols for gaseous hydrogen vehicles.  相似文献   

12.
This paper presents an analysis of vacuum insulation failure in an automotive cryogenic pressure vessel (also known as cryo-compressed vessel) storing hydrogen. Vacuum insulation failure increases heat transfer into cryogenic vessels by about a factor of 100, potentially leading to rapid pressurization and venting of the cryogen to avoid exceeding maximum allowable working pressure (MAWP). Hydrogen release to the environment may be dangerous, especially if the vehicle is located in a closed space (e.g. a garage or tunnel) at the moment of insulation failure. We therefore consider utilization of the hydrogen in the vehicle fuel cell and dissipation of the electricity by operating vehicle accessories or electric resistances as an alternative to releasing hydrogen to the environment. We consider two strategies: initiating hydrogen extraction immediately after vacuum insulation failure or waiting until maximum operating pressure is reached before extraction. The results indicate that cryogenic pressure vessels have thermodynamic advantages that enable slowing down hydrogen release to moderate levels that can be consumed in the fuel cell and dissipated in vehicle accessories supplemented by electric resistances, even in the worst case when the insulation fails at the moment when the vessel stores hydrogen near its maximum density (70 g/L at 300 bar). The two proposed strategies are therefore feasible, and the best alternative can be chosen based on economic and/or implementation constraints.  相似文献   

13.
On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H2 to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2–4 and 1.6–2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.  相似文献   

14.
Compressed hydrogen storage is currently widely used in fuel cell vehicles due to its simplicity in tank structure and refueling process. For safety reason, the final gas temperature in the hydrogen tank during vehicle refueling must be maintained under a certain limit, e.g., 85 °C. Many experiments have been performed to find the relations between the final gas temperature in the hydrogen tank and refueling conditions. The analytical solution of the hydrogen temperature in the tank can be obtained from the simplified thermodynamic model of a compressed hydrogen storage tank, and it serves as function formula to fit experimental temperatures. From the analytical solution, the final hydrogen temperature can be expressed as a weighted average form of initial temperature, inflow temperature and ambient temperature inspired by the rule of mixtures. The weighted factors are related to other refueling parameters, such as initial mass, initial pressure, refueling time, refueling mass rate, average pressure ramp rate (APRR), final mass, final pressure, etc. The function formula coming from the analytical solution of the thermodynamic model is more meaningful physically and more efficient mathematically in fitting experimental temperatures. The simple uniform formula, inspired by the concept of the rule of mixture and its weighted factors obtained from the analytical solution of lumped parameter thermodynamics model, is representatively used to fit the experimental and simulated results in publication. Estimation of final hydrogen temperature from refueling parameters based on the rule of mixtures is simple and practical for controlling the maximum temperature and for ensuring hydrogen safety during fast filling process.  相似文献   

15.
We have demonstrated a hydrogen (H2) refueling solution capable of delivering precooled, compressed gaseous hydrogen for heavy duty vehicle (HDV) refueling applications by refueling transit buses over a three-month period under real-world conditions. The system uses a submerged pump to deliver pressurized liquid H2 from a cryogenic storage tank to a dispensing control loop that vaporizes the liquid and adjusts the pressure and temperature of the resulting gas to enable refueling at 35 MPa and temperatures as low as −40 °C, consistent with the SAE J2601 standard. Using our full-scale mobile refueler, we completed 118 individual bus filling events using 13 different vehicles, involving a total of 3,700 kg of H2 dispensed. We report filling statistics from the entire campaign, details on individual fills (including fill times, final state of charge, benefits of pre-cooled fills, and back-to-back filling capabilities), and discuss transit agency feedback on technology performance. In our final test, the system successfully completed an endurance test using a single dispenser involving 52 consecutive individual fills over an 11.5-h period, dispensing 1,322 kg of H2 with an average fill rate of 3.4 kg/min and peak rate of 7.1 kg/min, and reaching an average SOC of 97.6% across all fills.  相似文献   

16.
The extensive population growth calls for substantial studies on sustainable development in urban areas. Thus, it is vital for cities to be resilient to new situations and adequately manage the changes. Investing in renewable and green energy, including high-tech hydrogen infrastructure, is crucial for sustainable economic progress and for preserving environmental quality. However, implementing new technology needs an effective and efficient risk assessment investigation to minimize the risk to an acceptable level or ALARP (As low as reasonably practicable). The present study proposes an advanced decision-making framework to manage the risk of hydrogen refueling station leakage by adopting the Bow-tie analysis and Interval-Value Spherical Fuzzy Sets to properly deal with the subjectivity of the risk assessment process. The outcomes of the case study illustrate the causality of hydrogen refueling stations' undesired events and enhance the decision-maker's thoughts about risk management under uncertainty. According to the findings, jet fire is a more likely accident in the case of liquid hydrogen leakage. Furthermore, equipment failure has been recognized as the most likely cause of hydrogen leakage. Thus, in order to maintain the reliability of liquid hydrogen refueling stations, it is crucial that decision-makers develop a trustworthy safety management system that integrates a variety of risk mitigation measures including asset management strategies.  相似文献   

17.
Pressure is often perceived as the single most important parameter when considering the safety of a storage system, for example when calculating the pneumatic energy that could be released in the event of a sudden accidental failure (or burst energy). In this paper, we investigate the role of temperature as another degree of freedom for minimizing the burst energy. Results are first presented for ideal gases, for which the relationship between burst energy as a function of initial and final volumes, temperature and pressures can be expressed analytically. Similar analysis is then derived for the specific case of H2 using real gas equations of state. Assuming the expansion is isentropic, which holds for an adiabatic and sudden release as in a burst, it is shown that the energy released during a sudden burst is a weak function of pressure, revealing that the effect of increasing pressure is negligible beyond a certain value (∼100 bar); whereas the burst energy is a linear function of temperature. This suggests that temperature controls the burst energy in a much greater way. This analysis is carried out in the frame of onboard H2 storage systems, for which it is shown that the use of cryogenic temperature for hydrogen vehicles, where risks of collision and impact on the surroundings are high, appears as a safety feature since burst energy is up to 18 times less than room temperature, high pressure storage.  相似文献   

18.
We have developed a hydrogen (H2) refueling solution capable of delivering precooled, compressed gaseous hydrogen for heavy duty vehicle (HDV) refueling applications. The system uses a submerged pump to deliver pressurized liquid H2 from a cryogenic storage tank to a dispensing control loop that vaporizes the liquid and adjusts the pressure and temperature of the resulting gas to enable refueling at 35 MPa and temperatures as low as ?40 °C. A full-scale mobile refueler was fabricated and tested over a 6-month campaign to validate its performance. We report results from tests involving a total of 9000 kg of liquid H2 pumped and 1350 filling cycles over a range of conditions. Notably, the system was able to repeatably complete multiple, back-to-back 30 kg filling cycles in under 6 min each, in full compliance with the SAE J2601-2 standard, demonstrating its potential for rapid-throughput HDV refueling applications.  相似文献   

19.
Transporting compressed gaseous hydrogen in tube trailers to hydrogen refueling stations (HRSs) is an attractive economic option in early fuel cell electric vehicle (FCEV) markets. This study examines conventional (Type I, steel) and advanced (Type IV, composite) high-pressure tube trailer configurations to identify those that offer maximum payload and lowest cost per unit of deliverable payload under United States Department of Transportation (DOT) size and weight constraints. The study also evaluates the impacts of various tube trailer configurations and payloads on the transportation and refueling cost of hydrogen under various transportation distance and HRS capacity scenarios. Composite tube trailers can transport large hydrogen payloads, up to 1100 kg at 7300 psi (500 bar) working pressure, while steel tube trailer configurations are limited by DOT weight regulations and may transport a maximum hydrogen payload of approximately 270 kg. Using steel pressure vessels to transport hydrogen at high pressure is counterproductive because of the rapid increase in vessel weight with wall thickness. The most economic composite tube trailer configuration includes 30-inch-diameter vessels packed in a 3 × 3 array. A linear relationship between the deliverable payload and the capital cost of a composite tube trailer has been developed for configurations with the lowest cost-per-unit payload. The capital cost is approximately $1100 per kg of deliverable hydrogen payload. Considering the entire delivery pathway (including refueling), tube trailer configurations with smaller vessels packed in greater numbers enable higher payload delivery and lower delivery cost in terms of $/kg H2, when delivering hydrogen over longer distances to large stations. Selection of the appropriate tube trailer configuration and corresponding hydrogen payload can reduce hydrogen delivery cost by up to 16%.  相似文献   

20.
The construction of hydrogenation infrastructure is important to promote the large-scale development of hydrogen energy industry. The technical performance of hydrogen refueling station (HRS) largely determines the refueling efficiency and cost of hydrogen fuel cell vehicles. This paper systematically lists the hydrogen refueling process and the key equipment applicable in the HRS. It comprehensively reviews the key equipment configuration from the hydrogen supply, compression, storage and refueling of the HRS. On the basis of the parameter selection and quantity configuration method, the process optimization technology related to the equipment utilization efficiency and construction cost was quantitatively evaluated. Besides, the existing problems and prospects are put forward, which lays the foundation for further research on the technical economy of HRSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号