共查询到20条相似文献,搜索用时 46 毫秒
1.
《武汉理工大学学报》2021,(2):28-34
为解决单一高速公路短时交通流预测模型预测精度低的问题,提出一种基于门控循环单元神经网络(Gated Recurrent Unit,GRU)和支持向量回归(Support Vector Regression,SVR)的组合预测模型。在对收集到的样本数据进行降噪处理后,分别构建GRU和SVR预测模型并基于最优组合赋权法对二者的预测结果进行赋权以得到最终预测结果。为检验所构建的GRU-SVR预测模型的实践适用性,依托实际高速公路交通流数据进行实例验证,并与单一的GRU、SVR模型预测结果进行对比。结果表明:所构建的预测模型具有较高的预测精度和泛化能力,可为高速公路短时交通流预测提供指导和借鉴。 相似文献
2.
《武汉理工大学学报》2020,(9):59-64
针对高速公路短时交通流预测问题,从数据驱动视角出发提出考虑注意力机制的双向长短时记忆神经网络(Attention Bi-directional Long Short-Term Memory,Att-Bi-LSTM)高速公路短时交通流预测模型。首先,从实际的高速公路运营线路中获取样本数据并进行相应的预处理;其次,采用滑动窗口模型进行数据重采样,并基于重采样后的样本数据构建Att-Bi-LSTM高速公路短时交通流预测模型;最后,为验证所构建模型的准确性,依托京台高速泰安收费站断面的交通流数据进行实例应用,并将其预测结果与LSTM、BP、SVR算法的预测结果进行对比。结果表明:所构建的Att-Bi-LSTM预测模型预测精度较高、模型泛化能力强,可为高速公路短时交通流预测提供一种新的思路。 相似文献
3.
丁振雷 《黑龙江工程学院学报》2023,(2):27-33
为解决一维短时交通流数据难以提取特征而造成预测精度低的问题,引入小波分解对传统LSTM模型进行改进,构建一种基于WA-LSTM的短时交通流组合预测模型。首先通过小波多尺度辨析将一维短时交通流时间序列数据分解为低频趋势分量和高频细节分量,舍去最高频细节分量达到去噪效果;然后对剩余的分量使用LSTM进行建模和预测,将每个分量得到的预测结果重构,最终得到短时交通流预测结果;最后通过Pems系统实测数据对模型进行验证。研究结果表明,在以5 min为间隔的短时交通流预测中,WA-LSTM模型比传统BP、传统LSTM、WA-BP模型的预测精度更高。 相似文献
4.
利用人工神经网络的并行处理自适应学习能力可实现车流量预测,但网络权值的训练因搜索方法单一容易陷入局部极小值,不易得到全局最优解.将布谷鸟算法用于网络权值矩阵的训练,借助其搜索速度快、不易陷入局部最优解的优势,提出改进的网络学习方案.基于MATLAB软件对所得网络进行训练并将结果用于短时交通流实验,结果表明所得模型的预测... 相似文献
5.
基于混沌理论的交通流短时预测模型 总被引:1,自引:0,他引:1
交通流预测是交通系统可行性分析、交通设计和交通管控的基础,短时预测是交通流预测的难点.论文在分析现有交通流预测方法的基础上,提出了一种基于混沌理论的交通流短时预测方法,利用基于小数据量的W olf改进算法计算了流率序列的最大Lyapunov指数.将基于Lya-punov指数的一维预测模式具体化,建立了交通流短时预测模型,并对模型进行了改进,改进后的预测结果具有较高的精度.该模型在智能交通系统(ITS)的交通控制与诱导方面具有广阔的应用前景. 相似文献
6.
提出了一种基于KSOM-BP神经网络的交通流短时预测模型。利用基于核函数的样本自组织映射神经网络(KSOM),在没有任何先验知识的情况下,自组织、自学习地将具有相似统计特性的历史样本划分成一类,促使分类样本统计特性更集中显著。对每个类别的样本分别建立动量-自适应学习速率的BP神经网络预测模型,以期提高交通流短时预测精度,减少预测时间。结合实际城市道路数据对模型进行验证。验证结果表明:KSOM-BP神经网络的预测误差统计指标MARE小于7%,比基于全部样本训练的BP神经网络的MARE减少4%左右;同时,KSOM-BP神经网络建模时间更短,证明了本文方法的有效性和先进性。 相似文献
7.
基于遗传算法的小波神经网络交通流预测 总被引:1,自引:0,他引:1
城市交通流的运行存在着高度的复杂性、时变性和随机性,实时准确的交通流预测是智能交通系统,特别是先进的交通管理系统与先进的出行者信息系统研究的关键.基于交通流预测的特点,给出了基于遗传算法的小波神经网络的交通预测模型GA-WNN,用具有自然进化规律的遗传算法来对小波神经网络的连接权值和伸缩平移尺度进行前期优化训练,部分代替了小波框架神经网络中按单一梯度方向进行参数优化的梯度下降法,克服了单一梯度下降法易陷入局部极小和引起振荡效应等缺陷.仿真实验验证了GA-WNN预测模型对短时交通流的预测的有效性. 相似文献
8.
短时交通流智能混合预测技术 总被引:3,自引:0,他引:3
为了克服现有单项预测技术对不同交通流状况的局限性,提出一种新的短时交通流智能混合预测模型.该智能混合预测模型包括3个子模型:历史平均模型、人工神经网络模型和模糊综合模型.历史平均模型以历史数据为基础,利用一次指数平滑法良好的静态稳定特性,对交通流量进行预测.人工神经网络模型采用常见的由S函数神经元组成的1.5层前馈神经网络,由于人工神经网络具有强大的动态非线性映射能力,该模型对动态交通流量的预测具有较高的精度和满意度.根据上述2个单项模型的特点,为了充分利用它们对不同交通状况的适应性,进一步提高整体预测效果,采用模糊逻辑来综合这2个单项模型的输出,并把模糊综合模型的输出作为整个智能混合模型的最终交通流量预测值.实际应用结果表明,该混合模型的预测精度高于单项预测模型各自单独使用时的精度,发挥了2种模型各自的优势,是短时交通流预测的一种有效方法. 相似文献
9.
基于遗传算法的小波神经网络交通流预测 总被引:3,自引:0,他引:3
城市交通流的运行存在着高度的复杂性、时变性和随机性,实时准确的交通流预测是智能交通系统,特别是先进的交通管理系统与先进的出行者信息系统研究的关键. 基于交通流预测的特点,给出了基于遗传算法的小波神经网络的交通预测模型GA WNN,用具有自然进化规律的遗传算法来对小波神经网络的连接权值和伸缩平移尺度进行前期优化训练,部分代替了小波框架神经网络中按单一梯度方向进行参数优化的梯度下降法,克服了单一梯度下降法易陷入局部极小和引起振荡效应等缺陷. 仿真实验验证了GA WNN预测模型对短时交通流的预测的有效性. 相似文献
10.
短时交通流因其不确定性等特点而导致预测很复杂,准确率不高.本文把蚁群聚类算法和RBF神经网络结合来构建交通流预测模型,用蚁群聚类确定RBF网络隐层神经元的中心值,并且为了找到最优的聚类结果,在蚁群算法中加入了局部搜索.此模型具有较强的局部泛化能力和较高的准确率.实例仿真研究表明此方法预测效果较好. 相似文献
11.
提出了一种改进的BP神经网络学习算法,并将其应用于短期电力负荷预测中,通过采用基于响应函数输出限幅和自适应调整学习率等措施,来提高神经网络本身的效率和精度,仿真结果验证了改进措施的有效性,取得了满意的预测结果. 相似文献
12.
通过归纳分析,结合实际的采集数据,对降雨径流预报的人工神经网络模型进行了改进,并针对不同的预报系统,采用改进的自适应BP算法进行分析,指出了今后洪流预报发展的方向. 相似文献
13.
电力系统负荷预测的精度将直接影响电力系统的经济效益和用电的安全和稳定,短期电力负荷预测的重要组成部分.利用人工神经网络可以任意逼近非线性系统的特性,将其用于短期负荷预测.该文研究了在改进的BP网络中加入了动量项和构建输入网络时结合了同类型日思想的模糊映射,预测结果表明比标准BP算法具有更好的性能.同时,针对大量无法用精... 相似文献
14.
15.
基于BP神经网络的交通数据序列动态可预测性分析方法 总被引:2,自引:0,他引:2
为了进一步改善交通数据序列短时多步预测的效果,提出了交通数据序列动态可预测性分析的思想,在设计了交通数据序列动态可预测性关联数据特征指标的基础上,基于BP神经网络建立了交通数据序列动态可预测性分析方法,运用某城市快速路主线与匝道车辆检测器的实际数据对该方法进行了验证,并与不同固定预测步数条件下的预测效果进行了对比分析.结果表明,所提出的方法能对交通数据序列的可预测性进行在线分析,在保持预测精度的情况下,可最大限度地增加交通数据短时预测的步数. 相似文献
16.
分析了影响光伏出力的主要因素,选取了太阳辐射量,以及隐含前一日综合气象信息的历史出力数据为关键影响因素,建立了改进的GA-BP神经网络的短期光伏发电功率预测模型.对样本空间进行了合理降维和去噪,并利用遗传算法逐步迭代出优化的初始权值,将得到的最优权值(阈值)赋值给预测网络各层进行学习和预测.仿真结果表明,改进的GA-BP神经网络模型能够剔除冗余的样本数据和优化初始权值,既具备了较快的收敛速度又不易陷入到局部极值中,具有较强的泛化能力,预测精确度大幅提高. 相似文献
17.
基于BP神经网络的装备使用维修费用预测 总被引:1,自引:0,他引:1
在对装备使用维修费用分析的基础上,利用神经网络理论,建立了时间序列对象的反向传播(back-propagation,BP)预测模型,并应用于装备使用维修费用的预测研究,并通过对某型装备使用维修费用的预测分析,证实了本模型的科学性与正确性。 相似文献
18.
利用灰色理论中累加生成方法能够削弱负荷中随机成分的特点,以及人工神经网络可以逼近任意函数的能力,对具有任意变化规律的数据序列进行拟合和预测.实验结果表明,基于灰色理论和神经网络的最优组合模型的平均相对误差为1.307%,比BP神经网络预测和灰色理论模型预测的精度更高,具有明显优势. 相似文献
19.
电力负荷预测通常采用神经网络方法,该方法训练时间较长,并且由于负荷受到气象因素影响,该算法预测的精度不是很高.为了克服当前存在的问题,采用粒子群算法优化BP神经网络的权值和阈值,归一化处理气象因素,利用神经网络预测短期电力负荷.实验结果表明,该方法比单纯BP神经网络预测具有明显优势. 相似文献
20.
本文通过对BP神经网络和影响交通流量因素的分析,采用Windrow-Hoff学习算法、Kolmogorov定理和trainlm训练方法,实现对长春市开运街和湖西路路段动态交通流量的预测. 相似文献