首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
比较了尼龙6/线型低密度聚乙烯(PA6/LDPE)和尼龙1010/线型低密度聚乙烯(PA1010/LLDPE)共混和的织构形态,共混物的织构形态除与织构调节剂、组分比有关外,还与尼龙物结构有很大关系。在尼龙/聚乙烯二元共混物中,分散相粒子以球状(或椭球状)形式存在,粒子较大,两相界面清晰,加入织构调节剂后,分散相粒子明显变小,分布均匀,在尼龙6共混物中,除仍有表面光滑的球状粒子外,出现了莲藕断面状粒子,但两相之间仍有缝隙,而在尼龙1010共混物中,出现了辐(车)轮状粒子,两相间相互作用强,分散相粒子与连续相之间紧紧地连接在一起,表明高碳数的尼龙1010与聚乙烯的链段间的相容性更好。  相似文献   

2.
PPO/PA6纳米共混物的制备及结构表征   总被引:1,自引:0,他引:1  
采用一种新的制备PPO/PA6共混物的方法,从己内酰胺(CL)单体出发,在聚苯醚(PPO)存在下阴离子开环聚合己内酰胺,由于其中一部分PPO主链上接枝了活性苯酯基团,能促进PA6链在其上增长,从而同时形成了PA6均聚物与PPO—g—PA6接枝共聚物,实现了原位聚合与原住增容的同步实施,并用SEM对其微观相形态结构进行了研究,控制共混条件可制备PA6纳米分散的PPO/PA6共混物。  相似文献   

3.
树形分子对尼龙11/尼龙6共混物的增韧增强   总被引:5,自引:0,他引:5  
在尼龙11/尼龙6共混物中添加4.0代树形分子,提高了共混物的性能;研究了不同树形分子含量对共混物力学性能的影响。结果表明,与尼龙11/尼龙6直接共混物相比,在本实验中添加0.25%树形分子所得共混物的拉伸强度、断裂伸长率有明显提高,缺口冲击强度略有增加。  相似文献   

4.
采用熔融共混制备了聚乳酸/柠檬酸基聚酯(PLA/PEGCA)共混物(质量比85/15),通过对共混物在缓冲溶液中的失重率、吸水率、PLA相对分子质量、表面形貌和力学性能的测定,研究了其降解行为,并同纯PLA做了对比。结果表明,由于PEGCA的亲水性强,缓冲溶液容易渗透到材料内部,所以PLA/PEGCA共混物相对于纯PLA有更好的降解能力。12周时,PLA/PEGCA共混物的失重率与吸水率分别为0.8%和13.0%,明显大于纯PLA。共混物中PLA的组分相对分子质量下降程度大于纯PLA。随着降解时间的延长,共混物表面出现明显裂纹,力学性能降低,12周后冲击强度和拉伸强度分别为7.8 MPa和11.3 MPa,而纯PLA变化不大。  相似文献   

5.
通过熔融共混挤出法制备不同质量比的热塑性聚氨酯-聚乳酸(TPU-PLA)共混物,采用SEM、DSC、TG、微卡软化点温度测定仪和熔融流动速率仪对共混物的表面形态结构、热学、高温加工等性能进行研究。结果表明:TPU-PLA共混物表面光滑且呈现出脆性断裂形貌特征,共混体系两种高聚物呈"海岛"分布;TPU-PLA共混体系中PLA与单独PLA相比,玻璃化转变温度Tg由69.60℃(Original PLA)变为57.58℃(PLA70)、53.29℃(PLA50)和55.64℃(PLA30),TPU均匀分散于PLA基体中且相界面分明,这都说明TPU-PLA共混体系为部分相容体系;TPU-PLA共混物的热失重起始分解温度范围为180~200℃,最快分解温度范围为310~350℃,热稳定性良好;TPU含量占共混物10%~30%时,共混物高温的临界变形温度相对单一体系有所提高;随TPU含量的继续增加,共混物熔融指数呈现先增大后减小的变化趋势,其中PLA与TPU质量比为4∶6的TPU-PLA共混物熔融指数达到最大,为1 406g·(10min)-1。  相似文献   

6.
采用扫描电镜(SEM)、力学性能测定,研究了尼龙6/聚苯乙烯(PA-6/PS)共混体系融合缝的形态及力学性能.鲒果表明,分散相和连续相的粘度比对融合缝的形态有重要影响.当η分散相/η连续相>1时,融合缝处分散相的形态不同于本体.融合缝处分散相沿融合缝取向;当η分散相/η连续相<1时.融合缝处分散相的形态与本体形态相似.均以球形粒子分散于基体中。融合缝的存在使共混体系的力学性能有较大下降,主要由融合缝处分散相形态所致。  相似文献   

7.
尼龙6/马来酸酐-苯乙烯多单体接枝聚丙烯反应共混物   总被引:8,自引:0,他引:8  
用双螺杆挤出机制备了聚丙烯(PP)与尼龙6(PA6)的共混物.先用多组分熔融接枝的方法将马来酸杆(MAH)和苯乙烯(St)共同接枝于聚丙烯(PP)上,制得多单体接枝聚丙烯PP-g-(MAH-St),该接枝物具有较高的MAH接枝率。利用MFR、SEM、TEM和力学性能测试等分析方法,研究了多组分熔融接枝聚丙烯PP-g-(MAH-St)对PA6/PP共混物的形态结构和力学性能等的影响。结果表明,PP-g-(MAH-St)中的酸酐基团与PA6末端的氨基发生化学反应,原位形成的PP-PA6共聚物能有效地改善PA6与PP的相容性,可以使PP均匀地分散在PA6基体中,相区尺寸明显减小,可至0.1μm,并使共混物的力学性能得到均衡的提高,冲击韧性的提高尤其显著,达到了橡胶改性所难以达到的效果。  相似文献   

8.
用双螺杆挤出机制备了(甲基丙烯酸甲酯/丁二烯/苯乙烯)共聚物(MBS树脂)与尼龙6(PA6)的共混物。使用扫描电镜(SEM)、熔体流动速率(MFR)和力学性能测试等分析方法,研究了马来酸酐(MAH)熔融接枝MBS(MBS-g-MAH)对PA6/MBS共混物的形态结构和力学性能等的影响。结果表明,MBS-g-MAH中的酸酐基团与PA6末端的氨基发生化学反应,原位形成的MBS-PA6共聚物,能有效地改善PA6与MBS的相容性,可以使MBS均匀地分散在PA6基体中,相区尺寸明显减小。PA6/MBS-g-MAH(70/30)体系冲击强度、拉伸强度、弯曲强度分别比PA6/MBS(70/30)提高了319%、54%、35%,从而得到综合性能优良的共混合金。  相似文献   

9.
尼龙6与改性PP的共混研究   总被引:26,自引:2,他引:26  
系统地研究了尼龙6与化学改性PP共混物的改性工艺、组成与性能的关系。实验结果表明,马来酸酐接枝改性PP对尼龙6有较好的改性作用,其中接枝率为2.3%的必性PP具有最好的改性作用。在尼龙6中加入改性PP后,冲击强度得到提高,吸湿性大大降低。当尼龙6与必性PP的混比在60:40-80:20之间时 ,可获得综合性能优异的共混材料,特别是在共混材料。特别重要的是在共混物中改性PP含量为30%左右时,可获得  相似文献   

10.
用“熔融挤出-热拉伸-淬冷”法制备环氧树脂改性聚乳酸(ePLA)/低熔点尼龙6(LMPA6)复合材料,使用差示扫描量热法(DSC)、X射线衍射(XRD)、热重分析(TGA)、流变仪和电子拉伸机等手段研究了具有不同LMPA6含量的ePLA/LMPA6复合材料的结晶行为、热性能、流变性能以及力学性能。DSC结果表明,LMPA6的加入改变了PLA的晶体结构,显著改变了复合材料体系的冷结晶温度、冷结晶熔融温度。热重分析(TGA)结果表明,LMPA6的加入提高了ePLA/LMPA6复合材料的热稳定性。动态力学性能结果表明,LMPA6的加入提高了ePLA/LMPA6复合材料的玻璃化转变温度(Tg)。流变学测试结果表明,应变(γ)超过临界应变(γC)后储能模量(G')呈非线性下降,出现“Payne”效应。这种复合材料表现出非牛顿流体的特性—“剪切变稀”行为,而且随着LMPA6含量的提高体系的“剪切变稀”行为更加明显。根据扫描电镜照片,在LMPA6含量为7%的体系中出现微纤结构,使其相容性最好。LMPA6的加入在一定程度上提高了复合材料的强度和韧性,特别是LMPA6含量为7%的复合材料其拉伸强度(72.8MPa)和冲击强度(5.0 kJ/m2)达到极值,比改性聚乳酸(65.7 MPa,2.8 kJ/m2)分别提高了10.8%和78.6%。  相似文献   

11.
PA6/PTT共混物的吸水性和力学性能   总被引:2,自引:0,他引:2  
由螺杆挤出机制备了尼龙6(PA6)和聚对苯二甲酸丙二醇酯(PTT)的共混物PA6/PTT。通过浸水实验,结合扫描电镜观察和热分析,研究了不同组分PA6/PTT共混物的吸水性能,并进行了相关力学性能测试。结果表明,PA6/PTT共混物吸水率随PTT含量增加而减小,即PTT的加入有效抑制了PA6的吸水率;在相同吸水条件下,PA6/PTT共混物的一般力学性能明显优于PA6,当PTT含量为20%时,共混物吸水后的拉伸、弯曲强度分别较PA6提高了20.98%和71.73%。  相似文献   

12.
PTFE/PA6和PTFE/PA66共混物的吸水性及流变行为   总被引:1,自引:0,他引:1  
通过浸水实验、缺口冲击断裂实验和动态流变测试,考察了PTFE含量对PTFE/PA6和PTFE/PA66共混物的吸水率、冲击断裂强度及熔体黏度的影响以及熔体黏度随温度和频率的变化规律。结果表明,PTFE/PA6和PTFE/PA66共混物的吸水率均随着PTFE含量的增加而减小,即PTFE的加入抑制了共混物的吸水性。两种共混物的冲击强度比纯PA明显降低,但是吸收水对两种共混物冲击强度的影响不显著。随着PTFE含量的增加,共混物熔体的黏度先减小后增加,说明适量的PTFE可以改善共混物的成型加工特性。共混物熔体的黏度随加载频率的增大而降低,符合假塑性流体流动规律。有趣的是,对于PTFE/PA6共混物的黏度随着温度的升高而减小,而PTFE/PA66共混物黏度随着温度升高近似成指数规律增大。  相似文献   

13.
先利用微层共挤出技术制备高密度聚乙烯(HDPE)/尼龙6(PA6)交替层状材料,并将其造粒,然后在不同的温度下对层状粒料进行模压和微量注塑成型制备HPDE/PA6片状共混物。通过扫描电镜和氧气渗透测试研究二次加工方法和温度对相形态和阻隔性能的影响。通过压板在200℃制备片状共混物,可以保留微层共挤出时形成的PA6片状结...  相似文献   

14.
采用原位聚合法制备了三元共聚尼龙6-66-1010(PA6-66-1010)与原位浇铸尼龙6(MCPA6)的共混复合材料。利用差示扫描量热法(DSC)、动态热机械分析(DMA)、力学性能测试和扫描电子显微镜(SEM)表征复合材料的结晶熔融行为、动态力学性能、力学性能及断裂破坏形貌。结果表明,PA6-66-1010的加入,使得复合材料中MCPA6分子间的氢键作用减弱、分子链活动性增加;复合材料的结晶温度、熔融温度、结晶度随着PA6-66-1010含量的增加而下降;PA6-66-1010的加入,破坏了MCPA6分子间氢键的规整性,使得复合材料韧性得到提高而强度变化不大;当PA6-66-1010含量为10%时,复合材料断裂伸长率提高近6倍。  相似文献   

15.
采用差示扫描量热法研究了熔融共混聚己内酰胺/聚对(间)苯二甲酸己二胺(PA6/PA6IcoT)相容体系的结晶温度、结晶程度以及结晶动力学,并通过热台偏光显微镜、广角X射线衍射仪观察了PA6/PA6IcoT共混体系的结晶相形态和晶体结构。结果表明,共混物的结晶行为与其组成、结晶温度区域密切相关。在非等温结晶时,随着非晶态PA6IcoT含量的增加,PA6相的相对结晶度增加,部分晶体结构由γ晶型转变为较完善的α晶型。在较高温度区域结晶时,少量的PA6IcoT就能使串并的晶核分开,形成大量微小晶粒。当PA6IcoT含量继续增加时,球晶数目会减少但尺寸增大。等温结晶动力学研究发现,结晶速度随PA6IcoT含量的提高而下降,Avrami指数值在4.5~6之间,并随着结晶温度升高而增大。  相似文献   

16.
用缺口冲击和缺口拉伸实验研究PA6/POE-g-MAH共混物的脆韧转变。结果显示,POE-g-MAH含量对共混物脆韧转变的影响主要是POE-g-MAH含量对裂尖局部应变速率的影响。在缺口冲击和缺口拉伸实验中,随着POE-g-MAH含量增加,裂尖附近参与变形的范围增大,导致局部应变速率降低。当局部应变速率降低至某临界值时,材料的断裂发生脆韧转变。在缺口拉伸实验中,随着拉伸速度增加,PA6/POE-g-MAH共混物发生脆韧转变的POE-g-MAH含量增加。这可能是拉伸速度与POE-g-MAH含量对PA6/POE-g-MAH共混物裂尖局部应变速率共同影响的结果。  相似文献   

17.
分别制备了马来酸酐与苯乙烯-丙烯腈无规共聚物(SAM)增容的尼龙6(PA6)/ABS/SAM共混物、马来酸酐接枝共聚的丙烯腈-丁二烯-苯乙烯共聚物(ABS-g-MA)增容增韧的PA6/ABS-g-MA共混物。结果表明,两个体系中ABS都可以均匀分散;冲击测试发现样条厚度为6.35 mm时,PA6/ABS-g-MA共混物出现明显的脆韧转变,PA6/ABS/SAM共混物为脆性断裂;样条厚度为3.18 mm时,两个体系都有明显脆韧转变;Vu-Khanh方程表明,PA6/ABS-g-MA共混物具有更高的裂纹扩展能(Gi)和撕裂模量(Ta),性能更好。  相似文献   

18.
PA6/ABS共混物的脆-韧转变研究   总被引:1,自引:0,他引:1  
采用熔融共混方法制备了苯乙烯-马来酸酐共聚物(SMA)增容的PA6/ARS共混物,结合吴守恒的临界基体层厚度(IDc)理论,考察了基体层厚度与界面粘接对PA6/ABS共混物脆一韧转变的影响.结果表明,温度低于8℃,当ID减小时,冲击强度先缓慢增加,当ID<ID.时,共混物缺口冲击强度急剧增加;测试温度处于13℃~23℃...  相似文献   

19.
以己内酰胺(CL)和6-氨基己酸(ACA)为聚合反应单体,用Hummers法制备氧化石墨烯(GO),再以GO为纳米填料用原位开环聚合法制备了GO改性PA6纳米复合材料(PA6/GO),并对PA6/GO纳米复合材料的结构及性能进行了研究。结果表明,PA6的黏均分子量达到104数量级,但加入过多的GO使PA6的分子量降低。形貌分析表明,GO均匀地分散在PA6基体中,并诱导了PA6基体的晶型由α晶型转变成γ晶型。同时,GO作为异相成核剂促进了PA6/GO复合材料中PA6基体的结晶,提高了PA6/GO复合材料的结晶度。拉伸测试结果表明,随着GO的加入PA6/GO纳米复合材料的拉伸强度先提高后降低,GO加入量为0.4份时拉伸强度达到最大值61.72 MPa,比纯PA6(48.52 MPa)提高了27.21%。导热性能分析表明含1.0份GO的PA6/GO纳米复合材料其50℃和100℃的热导率分别为0.317 W/(m·K)和0.280 W/(m·K),较纯PA6分别提高了33.19%和33.23%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号