首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Computers & Structures》2002,80(16-17):1409-1418
With areal recording density of hard disk drives (HDD) historically growing at an average of 60% per year, it is becoming increasingly more difficult to maintain the precise positioning required of the ever-smaller GMR heads to read and write data. Any unexpected vibration will cause the data written to a wrong data track, even the vibration amplitude is very small. Consequently, the dynamic behaviors of HDD spindle systems and their potential influence on track misregistration rate must be clearly understood. This paper is to apply an approach based on efficient component mode synthesis (CMS), incorporating multi-body system dynamics technology to predict dynamic characteristics of HDD ball-bearing spindle systems. First, the discrete governing equations of motion for HDD spindle systems, which consist of several flexible and rigid components, are derived through the use of Lagrangian equations. The elastic component modal frequencies and modal shape vectors are then obtained using a finite-element analysis. For ball bearing inherently defects, a mathematical model is used as a time-varying force, resulting in spindle vibrations. The time-varying force and component modal shape vectors are incorporated into the governing equations of the whole spindle systems. An implicit numerical integration method is used to obtain the forced vibration of the HDD spindle system. Finally, the dynamic responses of two typical HDD spindle systems are investigated numerically to predict the significant coupled vibration frequencies, mode shapes and resonance interactions. The results well agree with the solutions predicted by other analytical methods and the experimental results, respectively.  相似文献   

2.
This research investigates how the design variables of ball bearing affect the bearing stiffness and the natural frequencies of a hard disk drive (HDD) spindle system at elevated temperature. It shows that any design change that increases the contact angle of ball bearing reduces the variation in the bearing stiffness and the natural frequencies at elevated temperature. This research also proposes a robust HDD spindle motor in which a wave spring maintains a constant preload minimizing the effect of temperature variation. Experimental modal testing shows that the reduction of the natural frequencies at elevated temperature is much less in the proposed HDD spindle system than in the conventional spindle system. The proposed HDD spindle motor can improve the dynamic reliability of a HDD spindle system, which contributes to the high track density of a HDD.  相似文献   

3.
4.
 The system studied in this paper is a rotating disk/spindle assembly supported by hydrodynamic bearings with a rotating shaft design. Based on an experimentally verified mathematical model [1, 2], this paper presents how various spindle parameters affect critical vibration modes of the system, such as half-speed whirls and (0, 1) unbalanced modes (i.e., rocking modes). The parameters studied include number of disks, hub/shaft interface stiffness, shaft rigidity, thrust bearing location, radial bearing stiffness, radial bearing damping, and radial bearing locations. To simulate operational tests, the numerical study focuses on frequency response functions (FRF) of rotating disk/spindle systems subjected to linear base excitations. Simulation results show that 1-disk configuration has smaller FRF amplitude than the 4-disk configuration. In addition, the amplitude of half-speed whirl is primarily controlled by the radial bearing stiffness. In contrast, the amplitude of (0, 1) unbalanced modes is dominated by hub/shaft interface stiffness. Finally, radial bearing locations significantly affect the amplitude of half-speed whirls and (0, 1) unbalanced modes simultaneously. Received: 16 October 2001/Accepted: 31 December 2001  相似文献   

5.
 With the increase in recording density and data transfer rate of hard disk drive (HDD), fluid dynamic bearing (FDB) motors have been introduced due to their silence and high rotation accuracy. Although lubricant plays a major role in the development of FDB motors, it is extremely difficult to perform thorough evaluation because the quantity of lubricant used in the motor is as small as several micro liters. This paper describes a lubricant evaluation method for FDBs using the time of flight secondary ion mass spectrometry (TOF-SIMS), which enables simultaneous analyses of elements and organic molecules at PPM levels in an extremely small quantity of sample. By using this method, we found that worn metal elements generated both from spindle and bearings have substantial influences on lubricant degradation. Received: 5 July 2001/Accepted: 1 November 2001  相似文献   

6.
 Application of a spindle motor using a fluid dynamic bearing (FDB) to hard disk drive (HDD) presents some technical problems. Oil leakage from FDB is one of serious problem that must be solved. In this paper, we discuss a technique used to predict oil leakage from FDB spindle motors based on results of lubrication analysis of FDBs. We conducted oil leakage measurement using FDB spindle motors differing in specifications for FDBs. Then, we analyzed the lubrication in FDBs fitted to the spindle motors used in the measurement. Analysis results were compared with oil leakage measurement results. An analysis result that showed a correlation with the amount of oil leakage was determined as an evaluation item. Use of this evaluation item makes it possible to predict the occurrence of oil leakage with a high accuracy. Received: 5 July 2001/Accepted: 1 November 2001  相似文献   

7.
This paper investigates the whirling, tilting and axial motions of a hard disk drive (HDD) spindle system due to manufacturing errors of fluid dynamic bearings (FDBs). HDD spindle whirls around the sleeve with tilting angle due to the centrifugal force of unbalanced mass and the gyroscopic moment of rotating spindle in addition to axial motion. The whirling, tilting and axial motions may be increased by the manufacturing errors of FDBs such as imperfect cylindricity of sleeve bore, or imperfect perpendicularity between shaft and thrust plate. They increase the disk run-out to limit memory capacity and they may result in the instability of the HDD spindle system. This paper proposes the modified Reynolds equations for the coupled journal and thrust FDBs to include the variable film thickness due to the cylindricity of sleeve bore and the perpendicularity between shaft and thrust plate. Finite element method is used to solve the modified Reynolds equation to calculate the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The whirling, tilting and axial motions of the HDD spindle system are determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method. It shows that the imperfect cylindricity and perpendicularity increase the whirl radius, axial runout and tilting angle of the HDD spindle system. However, the degradation of dynamic performance due to the imperfect perpendicularity between shaft and thrust plate can be improved by allowing the other manufacturing error of the cylindricity of sleeve bore in such a way to compensate the bad effect of the imperfect perpendicularity.  相似文献   

8.
The purpose of this paper is to optimize OP-vibration performance of 3.5-in. hard disk drive (HDD) spindle motors through theoretical prediction and experimental verification. OP-vibration performance of HDD is closely related to the first rocking vibration of spindle motors because excited frequencies of 3.5-in. HDD from the environment are mostly below 500 Hz and the first rocking vibration is the only resonance in the corresponding frequencies. Therefore, minimizing first rocking vibration leads to improve OP-vibration performance of the spindle motors. In order to minimize the first rocking vibration key parameters of FDB spindle motors were selected from a previous work done by Heo and Shen (Microsyst Technol 11:1204–1213, 2005). Then, the selected parameters have been optimized to minimize the first rocking vibration through a theoretical model developed at University of Washington. Then, experiments with ten prototype FDB spindle motors have been conducted to verify the theoretical results. Each prototype motor has different spindle parameter configurations including bearing coefficients, bearing locations, and center of gravity location, etc. Also, this paper demonstrated that radial measurements of spindle rocking vibration have better correlation with OP-vibration performance than axial measurements through PES measurements. Finally, the optimized design has been manufactured by a motor maker and has also successfully verified the theoretical prediction experimentally.  相似文献   

9.
Currently, hard disk drives (HDD) use rotating disks to store digital data and magnetic recording heads are flying on the disk to read/write data. The recording heads are mounted on a slider–suspension assembly, which makes heads move from one track to another on the disk. The heads movement is controlled by close-loop feedback servo systems. It is well known that dynamic behaviors of head–slider–suspension-assembly (HSA) systems are of great influence on the track per inch capacity of HDD [1, 2]. As the problem is structurally complex, it is usually investigated using experimental methods or finite element simulation models [3]. Furthermore, the dual-stage servo system has been commonly considered as one promising solution to increase the servo bandwidth of the recording positioning system for high TPI HDDS. In particular, MEMS device embedded systems are superior to others in batch-fabrication. However, this dual-stage system has also resulted in more difficulties in predicting HDD dynamic performance. This paper presents the study of the problem using the macromodeling simulation approach. It applies efficient FEM based sub-structuring syntheses (SSS) [4] and fast boundary element method (BEM) approaches incorporated with system dynamics technology to investigate the dynamic characteristics of MEMS actuator embedded HSA systems for HDD.This research is funded by the Agency for Science, Technology and Research of Singapore, Strategic Research Program. Also, the authors would like to thanks Miss Jia Wenhui, who is a Research Student with ECE Department at National University of Singapore, Mr. Lim Boon Buan, the former research engineer with Data Storage Institute, for the MEMS actuator modeling and analytical work.  相似文献   

10.
This paper numerically and experimentally investigates the characteristics of torque ripple and unbalanced magnetic force (UMF) due to rotor eccentricity and their effects on noise and vibration in a hard disk drive (HDD) spindle motor with 12 poles and 9 slots. The major excitation frequencies of a non-operating HDD spindle system with rotor eccentricity are the least common multiples (LCM) of pole and slot numbers of the cogging torque and the harmonics of slot number ±1 of the UMF. An experimental setup is developed to measure the UMF generated by rotor eccentricity and to verify the simulated UMF. In the operating HDD spindle motor, the harmonics of the commutation frequency of torque ripple (multiplication of pole and phase) are increased by the interaction of the driving current and rotor eccentricity, and they are the same as the LCM of pole and slot numbers for a HDD spindle motor with 12 poles and 9 slots. The major excitation frequencies of the UMF while operating condition are also the harmonics of slot number ±1 and the harmonics of commutation frequency ±1. We verify that the source of the harmonics of slot number ±1 and the harmonics of commutation frequency ±1 in acoustic noise and vibration is rotor eccentricity of the UMF through experiments.  相似文献   

11.
This research investigates the electromechanical variables of a spindle motor and an actuator of an operating hard disk drive (HDD) due to the positioning and the free-fall of a HDD. Magnetic fields of a brushless DC motor and a voice coil motor are determined by the time-stepping finite element equation of the Maxwell equation and the driving circuit equation. The pressure of the fluid dynamic bearings (FDBs) is determined by solving the finite element equation of the Reynolds equation to calculate the reaction force and the friction torque. Dynamic equations of the rotating disk-spindle, actuator, and stationary bodies of a HDD are derived from the Newton–Euler’s equation. The speed control of the rotating disk-spindle and the servo control of the actuator are included to describe the head positioning between the rotating disk and the head. The simulation is performed to investigate the electromechanical variables of the spindle motor and the actuator due to the positioning and the free-fall of a HDD. This research shows that the positioning and the free-fall of a HDD change the electromechanical variables of the spindle motor and the actuator of an operating HDD, and that monitoring their electromechanical variables may identify the positioning and the free-fall of a HDD without using extra sensors.  相似文献   

12.
A new spindle motor is developed with a sloped permanent magnet (PM) for a hard disk drive (HDD). In a conventional spindle motor, a pulling plate is installed at the stationary part under the rotating PM to pull down rotating bodies. This axial force is required for stable operation of the spindle motor using a hydrodynamic bearing. However, the pulling plate has considerable iron loss and a negative torque opposing the direction of rotation due to the induced eddy currents. Our proposed model has a sloped PM surface to generate the required axial force as well as torque without the pulling plate. Optimal design is carried out by a response surface methodology, and the new spindle motors are prototyped. The resulting electrical and mechanical performance of the prototyped motors is compared with that of conventional models, showing the possibility of adapting the proposed model for an HDD spindle motor.  相似文献   

13.
Recently, the hard disk drive (HDD) industry has tried to use a compatible spindle system regardless of the number of disks because of the resulting cost reduction and standardization of components. The center of gravity (CG) location predominantly affects the disk and slider off-track vibration, which is why the rocking mode of a spindle system is affected by the CG. Any changes to the CG affect the operational vibration of the spindle system. In a compatible fluid dynamic bearing (FDB) spindle system, changing the number of disks may alter the CG. Nevertheless, research into the compatibility of FDB designs has not been undertaken. In this study, FDB design parameters were selected to reduce the slider off-track vibration with variations in the CG considering a compatible spindle system. First, a verified finite element (FE) model of a spindle system was constructed. The amplitude and frequency of the rocking mode were compared between a one-disk spindle system and a two-disk spindle system using the FE model, considering the relationship between the CG location, which is changed by the number of disks, and the location of the upper and lower journal bearings. HDD prototypes were then manufactured using the improved design. Based on the manufactured spindle system, the variations in the rocking mode characteristics and slider off-track vibration were measured and operational vibration tests were performed to verify the effect of the number of disks on the slider off-track vibration. An improved FDB spindle design was developed with a reduced rocking mode, and a compatible spindle system was proposed.  相似文献   

14.
Enterprise hard disk drives (HDDs) are widely used in high-end storage systems for data center. One of key performance requirements for enterprise HDDs is data access rate, which demands very high rotational speed (e.g. 15 k rpm or more) to permit fast access time. To reach such high speed, the disk spindle motor draws more power to spin and hence the temperature of HDD enclosure increases due to large windage loss. It has been known, temperature rise is one of the most fundamental factors that affect the reliability of the disk drive. In order to develop high reliable enterprise HDDs, thermal management of enterprise HDDs needs to be optimized to improve heat dissipation. One possible approach is to fill disk drive with helium because of its lower density and higher thermal conductivity. This paper investigates thermal performances of helium-filled enterprise disk drives through FEM simulations with experimental validations. Windage loss and heat convection of the HDD filled with helium and air are analysed. The simulated and measured temperature distributions of one commercial enterprise HDD with helium-filled and helium-air mixture are compared with those of an air-filled one. The results show 41% reduction of temperature rise of HDD enclosure can be achieved by filling with helium in comparison with that of air-filled HDD. It is also projected that in terms of equivalent cooling capability like air-filled HDD at 15 k rpm, helium-filled HDD spindle can spin up to 19 k rpm, which will greatly increase data access rate by 25% for future enterprise applications.  相似文献   

15.
This research proposes a robust optimal design methodology to reduce the cogging torque of a hard disk drive (HDD) spindle motor due to the coil-positioning error of the magnetizer. The design optimization problem of the magnetizer is formulated with an objective function of the cogging torque and the constraints of the torque constant. The coil-positioning errors measured by computerized tomography are considered as the random variables of the robust optimal design problem. Additional design variables of the magnetizer are chosen in the optimization problem, such as back-yoke thickness, notch depth, etc. Magnetic finite element analysis of the HDD spindle motor is also performed to calculate the cogging torque and torque constant. The cogging torque and torque constant of the optimal design are compared with those of the conventional design, demonstrating that the proposed method effectively reduces the cogging toque of the HDD spindle motor.  相似文献   

16.
This paper aims at investigating the effects of variations in thrust hydrodynamic bearing (HDB) parameters such as axial stiffness and damping coefficients on the axial vibration of disk-spindle systems in hard disk drives. For a parametric study, a closed-form axial frequency response function (FRF) of HDB spindle systems is derived as a function of the axial stiffness and damping coefficients of thrust HDBs. It is known that the axial vibration of the disk-spindle system is composed of two main parts: the vibration of the rigid hub in the axial direction and the disk deflection in the transverse direction. The results from this research clearly show that the vibration amplitudes at low frequency range is dominated by the axial vibration of the hub, and the amplitude of the unbalanced (0,0) mode is dominated by the disk deflection. The parametric study reveals that at low frequency range an increase in the bearing stiffness significantly reduces the hub axial vibration, and hence the axial vibration of the disk-spindle system. Surprisingly, a too much increase in the damping results in a higher amplitude of the unbalanced (0,0) mode. This is because a heavy damping constrains the hub vibration to nearly no motion, resulting in a direct transmission of vibration from the base to disk. To confirm the parametric study, a vibration test was performed on two HDB spindle motors with identical design but different fluid viscosity. The higher viscosity represents the higher axial stiffness and damping in the thrust bearing. The test result indicates that the spindle motor with higher viscosity has a larger unbalanced (0,0) mode amplitude when subjected to an axial base excitation.  相似文献   

17.
介绍了磁悬浮硬盘的概念,测量并分析了普通硬盘的音圈电机和主轴电机产生的非记录磁场以及磁悬浮硬盘中的磁力轴承产生的非记录磁场,分析了非记录磁场对记录磁场的影响,为磁悬浮硬盘的设计和研究提供了依据。  相似文献   

18.
This paper presents a finite element method to analyze the free vibration of a flexible HDD (hard disk drive) composed of the spinning disk–spindle system with fluid dynamic bearings (FDBs), the head–suspension–actuator with pivot bearings, and the base plate with complicated geometry. Finite element equations of each component of an HDD are consistently derived with the satisfaction of the geometric compatibility in the internal boundary between each component. The spinning disk, hub and FDBs are modeled by annular sector elements, beam elements and stiffness and damping elements, respectively. It develops a 2-D quadrilateral 4-node shell element with rotational degrees of freedom to model the thin suspension efficiently as well as to satisfy the geometric compatibility between the 3-D tetrahedral element and the 2-D shell element. Base plate, arm, E-block and fantail are modeled by tetrahedral elements. Pivot bearing of an actuator and air bearing between spinning disk and head are modeled by stiffness elements. The restarted Arnoldi iteration method is applied to solve the large asymmetric eigenvalue problem to determine the natural frequencies and mode shapes of the finite element model. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of an HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head–suspension–actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of an HDD and to design a robust HDD against shock.  相似文献   

19.
The present work investigates vibro-acoustic behaviors of the fluid dynamic bearing (FDB) spindle motors for hard disk drives (HDD) through the sound spectra and the frequency response functions (FRF) of the motor structure. The quantitative evidence on the significance of the acoustic noise originated from the electromagnetic source is deduced from the sound spectra that were measured in two distinct cases of the spinning motor: in the normal operation and at the moment immediately after the power supply was disconnected. It is found that the effect of electromagnetic noise source is more dominant than the combined effect of the mechanical and aerodynamic sources. In addition, it is identified that, within the audible range of frequency, the frequency range of 13.4–20 kHz deems important to the noise problem as it is the main contributor to the acoustic noise for the FDB spindle motors. Moreover, the structural resonances that can be identified via the FRF are found to play an important role in the noise emitted by the motors. The concurrence of resonance and excitation frequencies clearly intensifies the sound spectrum, resulting in high discrete peaks, hence higher decibel level.  相似文献   

20.
A hard disk drive (HDD) is very sensitive to shock. Increasing portability demands have led to increased HDD exposure to unexpected shocks. Therefore, the dynamic characteristics of an HDD were utilized to investigate the relative behavior of the disk and head stack assembly (HSA) during operational shock. A finite element model of HDD was constructed to simulate operational shock. This model included the spindle system, base, HSA, and disk. The relative behavior of the disk and HSA was analyzed using different bases with different stiffness. A drop test was performed to verify the simulation results. A modified base design was then proposed to protect against contact between the disk and HSA in HDD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号