首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper considers the problem of interactively finding the cutting contour to extract components from a given mesh. Some existing methods support cuts of arbitrary shape but require careful and tedious input from the user. Others need little user input however they are sensitive to user input and need a postprocessing step to smooth the generated jaggy cutting contours. The popular geometric snake can be used to optimize the cutting contour, but it cannot deal with the topology change. In this paper, we propose a geodesic curvature flow based framework to overcome all these problems. Since in many cases the meaningful cutting contour on a 3D mesh is locally shortest in the sense of some weighted curve length, the geodesic curvature flow is an ideal tool for our problem. It evolves the cutting contour to the nearby local minimum. We should mention that the previous numerical scheme, discretized geodesic curvature flow (dGCF) is too slow and has not been applied to mesh segmentation. With a careful observation to dGCF, we devise here a fast computation scheme called fast geodesic curvature flow (FGCF), which only needs to solve a smaller and easier problem. The initial cutting contour is generated by a variant of random walks algorithm, which is very fast and gives reasonable cutting result with little user input. Experiment results on the benchmark mesh segmentation data set show that our proposed framework is robust to user input and capable of producing good results reflecting geometric features and human shape perception.  相似文献   

2.
Updating a Delaunay triangulation when data points are slightly moved is the bottleneck of computation time in variational methods for mesh generation and remeshing. Utilizing the connectivity coherence between two consecutive Delaunay triangulations for computation speedup is the key to solving this problem. Our contribution is an effective filtering technique that confirms most bi‐cells whose Delaunay connectivities remain unchanged after the points are perturbed. Based on bi‐cell flipping, we present an efficient algorithm for updating two‐dimensional and three‐dimensional Delaunay triangulations of dynamic point sets. Experimental results show that our algorithm outperforms previous methods.  相似文献   

3.
Strange attractors of 3D vector field flows sometimes have a fractal geometric structure in one dimension, and smooth surface behavior in the other two. General flow visualization methods show the flow dynamics well, but not the fractal structure. Here we approximate the attractor by polygonal surfaces, which reveal the fractal geometry. We start with a polygonal approximation which neglects the fractal dimension, and then deform it by the flow to create multiple sheets of the fractal structure. We use adaptive subdivision, mesh decimation, and retiling methods to preserve the quality of the polygonal surface in the face of extreme stretching, bending, and creasing caused by the flow. A GPU implementation provides efficient visualization, which we also apply to other turbulent flows.  相似文献   

4.
Updating a Delaunay triangulation when its vertices move is a bottleneck in several domains of application. Rebuilding the whole triangulation from scratch is surprisingly a very viable option compared to relocating the vertices. This can be explained by several recent advances in efficient construction of Delaunay triangulations. However, when all points move with a small magnitude, or when only a fraction of the vertices move, rebuilding is no longer the best option. This paper considers the problem of efficiently updating a Delaunay triangulation when its vertices are moving under small perturbations. The main contribution is a set of filters based upon the concept of vertex tolerances. Experiments show that filtering relocations is faster than rebuilding the whole triangulation from scratch under certain conditions.  相似文献   

5.
Functions that optimize Laplacian‐based energies have become popular in geometry processing, e.g. for shape deformation, smoothing, multiscale kernel construction and interpolation. Minimizers of Dirichlet energies, or solutions of Laplace equations, are harmonic functions that enjoy the maximum principle, ensuring no spurious local extrema in the interior of the solved domain occur. However, these functions are only C0 at the constrained points, which often causes smoothness problems. For this reason, many applications optimize higher‐order Laplacian energies such as biharmonic or triharmonic. Their minimizers exhibit increasing orders of continuity but lose the maximum principle and show oscillations. In this work, we identify characteristic artifacts caused by spurious local extrema, and provide a framework for minimizing quadratic energies on manifolds while constraining the solution to obey the maximum principle in the solved region. Our framework allows the user to specify locations and values of desired local maxima and minima, while preventing any other local extrema. We demonstrate our method on the smoothness energies corresponding to popular polyharmonic functions and show its usefulness for fast handle‐based shape deformation, controllable color diffusion, and topologically‐constrained data smoothing.  相似文献   

6.
In this paper, we propose an improvement of an algorithm of Aurenhammer, Hoffmann and Aronov to find a least square matching between a probability density and finite set of sites with mass constraints, in the Euclidean plane. Our algorithm exploits the multiscale nature of this optimal transport problem. We iteratively simplify the target using Lloyd's algorithm, and use the solution of the simplified problem as a rough initial solution to the more complex one. This approach allows for fast estimation of distances between measures related to optimal transport (known as Earth‐mover or Wasserstein distances). We also discuss the implementation of these algorithms, and compare the original one to its multiscale counterpart.  相似文献   

7.
Data sets coming from simulations or sampling of real‐world phenomena often contain noise that hinders their processing and analysis. Automatic filtering and denoising can be challenging: when the nature of the noise is unknown, it is difficult to distinguish between noise and actual data features; in addition, the filtering process itself may introduce “artificial” features into the data set that were not originally present. In this paper, we propose a smoothing method for 2D scalar fields that gives the user explicit control over the data features. We define features as critical points of the given scalar function, and the topological structure they induce (i.e., the Morse‐Smale complex). Feature significance is rated according to topological persistence. Our method allows filtering out spurious features that arise due to noise by means of topological simplification, providing the user with a simple interface that defines the significance threshold, coupled with immediate visual feedback of the remaining data features. In contrast to previous work, our smoothing method guarantees a C1‐continuous output scalar field with the exact specified features and topological structures.  相似文献   

8.
Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point computations to establish correspondences between two data sets, and solving for the optimal transformation that brings these correspondences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results when dealing with outliers and incomplete data. The complete source code of our implementation is provided at http://lgg.epfl.ch/sparseicp .  相似文献   

9.
Detailed geometric models of the real world are in increasing demand. LiDAR data is appropriate to reconstruct urban models. In urban scenes, the individual surfaces can be reconstructed and connected to form the scene geometry. There are various methods for reconstructing the free‐form shape of a point sample on a single surface. However, these methods do not take the context of the surface into account. We present the guided α‐shape: an extension of the well known α‐shape that uses lines (guides) to indicate preferred locations for the boundary of the shape. The guided α‐shape uses (parts of) these lines as boundary where the points suggest that this is appropriate. We prove that the guided α‐shape can be constructed in O((n + m) log (n + m)) time, from an input of n points and m guides. We apply guided α‐shapes to urban reconstruction from LiDAR, where neighboring surfaces can be connected conveniently along their intersection lines into adjacent surfaces of a 3D model. We analyze guided α‐shapes of both synthetic and real data and show they are consistently better than α‐shapes for this application.  相似文献   

10.
We introduce a unified optimization framework for geometry processing based on shape constraints. These constraints preserve or prescribe the shape of subsets of the points of a geometric data set, such as polygons, one‐ring cells, volume elements, or feature curves. Our method is based on two key concepts: a shape proximity function and shape projection operators. The proximity function encodes the distance of a desired least‐squares fitted elementary target shape to the corresponding vertices of the 3D model. Projection operators are employed to minimize the proximity function by relocating vertices in a minimal way to match the imposed shape constraints. We demonstrate that this approach leads to a simple, robust, and efficient algorithm that allows implementing a variety of geometry processing applications, simply by combining suitable projection operators. We show examples for computing planar and circular meshes, shape space exploration, mesh quality improvement, shape‐preserving deformation, and conformal parametrization. Our optimization framework provides a systematic way of building new solvers for geometry processing and produces similar or better results than state‐of‐the‐art methods.  相似文献   

11.
12.
Widely used for morphing between objects with arbitrary topology, distance field interpolation (DFI) handles topological transition naturally without the need for correspondence or remeshing, unlike surface‐based interpolation approaches. However, lack of correspondence in DFI also leads to ineffective control over the morphing process. In particular, unless the user specifies a dense set of landmarks, it is not even possible to measure the distortion of intermediate shapes during interpolation, let alone control it. To remedy such issues, we introduce an approach for establishing correspondence between the interior of two arbitrary objects, formulated as an optimal mass transport problem with a sparse set of landmarks. This correspondence enables us to compute non‐rigid warping functions that better align the source and target objects as well as to incorporate local rigidity constraints to perform as‐rigid‐aspossible DFI. We demonstrate how our approach helps achieve flexible morphing results with a small number of landmarks.  相似文献   

13.
Segmenting three dimensional objects using properties of heat diffusion on meshes aim to produce salient results. The few existing algorithms based on heat diffusion do not use the full knowledge that can be gained from heat diffusion and are sensitive to varying kinds of perturbations. Our simple algorithm, Heat Walk, converts the implicit information in the heat kernel to explicit knowledge about the pathways for maximum heat flow capacity. We develop a two stage strategy for segmentation. In the first stage we quickly identify regions which are dominated by heat accumulators by employing a greedy algorithm. The second stage partitions out dissipative regions from the previously discovered accumulative regions by using a KL‐divergence based criterion. The resulting algorithm is both independent of human intervention and fast because of the globally aware directed walk along the maximal heat flow capacity. Extensive experimental evidence shows the method is robust to a variety of noise factors including topological short circuits, surface holes, pose variations, variations in tessellation, missing features, scaling, as well as normal and shot noise. Comparison with the Princeton Segmentation Benchmark (PSB) shows that our method is comparable with state of the art segmentation methods and has additional advantages of being robust and self contained. Based upon theoretical insight the convergence and stability of the Heat Walk is shown.  相似文献   

14.
Surface Ricci flow is a powerful tool to design Riemannian metrics by user defined curvatures. Discrete surface Ricci flow has been broadly applied for surface parameterization, shape analysis, and computational topology. Conventional discrete Ricci flow has limitations. For meshes with low quality triangulations, if high conformality is required, the flow may get stuck at the local optimum of the Ricci energy. If convergence to the global optimum is enforced, the conformality may be sacrificed. This work introduces a novel method to generalize the traditional discrete Ricci flow. The generalized Ricci flow is more flexible, more robust and conformal for meshes with low quality triangulations. Conventional method is based on circle packing, which requires two circles on an edge intersect each other at an acute angle. Generalized method allows the two circles either intersect or separate from each other. This greatly improves the flexibility and robustness of the method. Furthermore, the generalized Ricci flow preserves the convexity of the Ricci energy, this ensures the uniqueness of the global optimum. Therefore the algorithm won't get stuck at the local optimum. Generalized discrete Ricci flow algorithms are explained in details for triangle meshes with both Euclidean and hyperbolic background geometries. Its advantages are demonstrated by theoretic proofs and practical applications in graphics, especially surface parameterization.  相似文献   

15.
We present novel parallel algorithms for collision detection and separation distance computation for rigid and deformable models that exploit the computational capabilities of many‐core GPUs. Our approach uses thread and data parallelism to perform fast hierarchy construction, updating, and traversal using tight‐fitting bounding volumes such as oriented bounding boxes (OBB) and rectangular swept spheres (RSS). We also describe efficient algorithms to compute a linear bounding volume hierarchy (LBVH) and update them using refitting methods. Moreover, we show that tight‐fitting bounding volume hierarchies offer improved performance on GPU‐like throughput architectures. We use our algorithms to perform discrete and continuous collision detection including self‐collisions, as well as separation distance computation between non‐overlapping models. In practice, our approach (gProximity) can perform these queries in a few milliseconds on a PC with NVIDIA GTX 285 card on models composed of tens or hundreds of thousands of triangles used in cloth simulation, surgical simulation, virtual prototyping and N‐body simulation. Moreover, we observe more than an order of magnitude performance improvement over prior GPU‐based algorithms.  相似文献   

16.
Despite the large amount of work devoted in recent years to the problem of non‐rigid shape matching, practical methods that can successfully be used for arbitrary pairs of shapes remain elusive. In this paper, we study the hardness of the problem of shape matching, and introduce the notion of the shape condition number, which captures the intuition that some shapes are inherently more difficult to match against than others. In particular, we make a connection between the symmetry of a given shape and the stability of any method used to match it while optimizing a given distortion measure. We analyze two commonly used classes of methods in deformable shape matching, and show that the stability of both types of techniques can be captured by the appropriate notion of a condition number. We also provide a practical way to estimate the shape condition number and show how it can be used to guide the selection of landmark correspondences between shapes. Thus we shed some light on the reasons why general shape matching remains difficult and provide a way to detect and mitigate such difficulties in practice.  相似文献   

17.
Scalar functions defined on manifold triangle meshes is a starting point for many geometry processing algorithms such as mesh parametrization, skeletonization, and segmentation. In this paper, we propose the Auto Diffusion Function (ADF) which is a linear combination of the eigenfunctions of the Laplace-Beltrami operator in a way that has a simple physical interpretation. The ADF of a given 3D object has a number of further desirable properties: Its extrema are generally at the tips of features of a given object, its gradients and level sets follow or encircle features, respectively, it is controlled by a single parameter which can be interpreted as feature scale, and, finally, the ADF is invariant to rigid and isometric deformations.
We describe the ADF and its properties in detail and compare it to other choices of scalar functions on manifolds. As an example of an application, we present a pose invariant, hierarchical skeletonization and segmentation algorithm which makes direct use of the ADF.  相似文献   

18.
Delaunay refinement, recognized as a versatile tool for meshing a variety of geometries, has the deficiency that it does not scale well with increasing mesh size. The bottleneck can be traced down to the memory usage of 3D Delaunay triangulations. Recently an approach has been suggested to tackle this problem for the specific case of smooth surfaces by subdividing the sample set in an octree and then refining each subset individually while ensuring termination and consistency. We extend this to localized refinement of volumes, which brings about some new challenges. We show how these challenges can be met with simple steps while retaining provable guarantees, and that our algorithm scales many folds better than a state‐of‐the‐art meshing tool provided by CGAL.  相似文献   

19.
The joint bilateral filter is a variant of the standard bilateral filter, where the range kernel is evaluated using a guidance signal instead of the original signal. It has been successfully applied to various image processing problems, where it provides more flexibility than the standard bilateral filter to achieve high quality results. On the other hand, its success is heavily dependent on the guidance signal, which should ideally provide a robust estimation about the features of the output signal. Such a guidance signal is not always easy to construct. In this paper, we propose a novel mesh normal filtering framework based on the joint bilateral filter, with applications in mesh denoising. Our framework is designed as a two‐stage process: first, we apply joint bilateral filtering to the face normals, using a properly constructed normal field as the guidance; afterwards, the vertex positions are updated according to the filtered face normals. We compute the guidance normal on a face using a neighboring patch with the most consistent normal orientations, which provides a reliable estimation of the true normal even with a high‐level of noise. The effectiveness of our approach is validated by extensive experimental results.  相似文献   

20.
In the field of computer vision, the introduction of a low‐level preprocessing step to oversegment images into superpixels – relatively small regions whose boundaries agree with those of the semantic entities in the scene – has enabled advances in segmentation by reducing the number of elements to be labeled from hundreds of thousands, or millions, to a just few hundred. While some recent works in mesh processing have used an analogous oversegmentation, they were not intended to be general and have relied on graph cut techniques that do not scale to current mesh sizes. Here, we present an iterative superfacet algorithm and introduce adaptations of undersegmentation error and compactness, which are well‐motivated and principled metrics from the vision community. We demonstrate that our approach produces results comparable to those of the normalized cuts algorithm when evaluated on the Princeton Segmentation Benchmark, while requiring orders of magnitude less time and memory and easily scaling to, and enabling the processing of, much larger meshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号