共查询到20条相似文献,搜索用时 15 毫秒
1.
D. F. Keefe T. M. O'Brien D. B. Baier S. M. Gatesy E. L. Brainerd D. H. Laidlaw 《Computer Graphics Forum》2008,27(3):863-870
We present novel visual and interactive techniques for exploratory visualization of animal kinematics using instantaneous helical axes (IHAs). The helical axis has been used in orthopedics, biomechanics, and structural mechanics as a construct for describing rigid body motion. Within biomechanics, recent imaging advances have made possible accurate high‐speed measurements of individual bone positions and orientations during experiments. From this high‐speed data, instantaneous helical axes of motion may be calculated. We address questions of effective interactive, exploratory visualization of this high‐speed 3D motion data. A 3D glyph that encodes all parameters of the IHA in visual form is presented. Interactive controls are used to examine the change in the IHA over time and relate the IHA to anatomical features of interest selected by a user. The techniques developed are applied to a stereoscopic, interactive visualization of the mechanics of pig mastication and assessed by a team of evolutionary biologists who found interactive IHA‐based analysis a useful addition to more traditional motion analysis techniques. 相似文献
2.
Caricature is an interesting art to express exaggerated views of different persons and things through drawing. The face caricature is popular and widely used for different applications. To do this, we have to properly extract unique/specialized features of a person's face. A person's facial feature not only depends on his/her natural appearance, but also the associated expression style. Therefore, we would like to extract the neutural facial features and personal expression style for different applicaions. In this paper, we represent the 3D neutral face models in BU–3DFE database by sparse signal decomposition in the training phase. With this decomposition, the sparse training data can be used for robust linear subspace modeling of public faces. For an input 3D face model, we fit the model and decompose the 3D model geometry into a neutral face and the expression deformation separately. The neutral geomertry can be further decomposed into public face and individualized facial feature. We exaggerate the facial features and the expressions by estimating the probability on the corresponding manifold. The public face, the exaggerated facial features and the exaggerated expression are combined to synthesize a 3D caricature for a 3D face model. The proposed algorithm is automatic and can effectively extract the individualized facial features from an input 3D face model to create 3D face caricature. 相似文献
3.
In this paper, we present an inexpensive approach to create highly detailed reconstructions of the landscape surrounding a road. Our method is based on a space‐efficient semi‐procedural representation of the terrain and vegetation supporting high‐quality real‐time rendering not only for aerial views but also at road level. We can integrate photographs along selected road stretches. We merge the point clouds extracted from these photographs with a low‐resolution digital terrain model through a novel algorithm which is robust against noise and missing data. We pre‐compute plausible locations for trees through an algorithm which takes into account perceptual cues. At runtime we render the reconstructed terrain along with plants generated procedurally according to pre‐computed parameters. Our rendering algorithm ensures visual consistency with aerial imagery and thus it can be integrated seamlessly with current virtual globes. 相似文献
4.
Recent spatially varying reflectance (svBRDF) printing systems can reproduce an input document as a combination of matte, glossy and metallic inks. Due to the limited number of inks, this reproduction process incurs some distortion. In this work, we present an svBRDF gamut mapping algorithm that minimizes distortions in the angular and spatial domains. To preserve a material's perceived variation with lighting and view, we introduce an improved BRDF similarity metric that builds on both experimental results on reflectance perception and on the statistics of natural lighting environments. Our experiments show better preservation of object color and highlights, as validated quantitatively as well as through a perceptual study. As for the spatial domain, we show how to adapt traditional color gamut mapping methods to svBRDFs. Our solution takes into account the contrast between regions, achieving better preservation of textures and edges. 相似文献
5.
Area lights add tremendous realism, but rendering them interactively proves challenging. Integrating visibility is costly, even with current shadowing techniques, and existing methods frequently ignore illumination variations at unoccluded points due to changing radiance over the light's surface. We extend recent image‐space work that reduces costs by gathering illumination in a multiresolution fashion, rendering varying frequencies at corresponding resolutions. To compute visibility, we eschew shadow maps and instead rely on a coarse screen‐space voxelization, which effectively provides a cheap layered depth image for binary visibility queries via ray marching. Our technique requires no precomputation and runs at interactive rates, allowing scenes with large area lights, including dynamic content such as video screens. 相似文献
6.
Signed distance functions (SDF) to explicit or implicit surface representations are intensively used in various computer graphics and visualization algorithms. Among others, they are applied to optimize collision detection, are used to reconstruct data fields or surfaces, and, in particular, are an obligatory ingredient for most level set methods. Level set methods are common in scientific visualization to extract surfaces from scalar or vector fields. Usual approaches for the construction of an SDF to a surface are either based on iterative solutions of a special partial differential equation or on marching algorithms involving a polygonization of the surface. We propose a novel method for a non‐iterative approximation of an SDF and its derivatives in a vicinity of a manifold. We use a second‐order algebraic fitting scheme to ensure high accuracy of the approximation. The manifold is defined (explicitly or implicitly) as an isosurface of a given volumetric scalar field. The field may be given at a set of irregular and unstructured samples. Stability and reliability of the SDF generation is achieved by a proper scaling of weights for the Moving Least Squares approximation, accurate choice of neighbors, and appropriate handling of degenerate cases. We obtain the solution in an explicit form, such that no iterative solving is necessary, which makes our approach fast. 相似文献
7.
Younghui Kim Hwi‐ryong Jung Sungwoo Choi Jungjin Lee Junyong Noh 《Computer Graphics Forum》2011,30(7):2067-2076
Computer graphics is one of the most efficient ways to create a stereoscopic image. The process of stereoscopic CG generation is, however, still very inefficient compared to that of monoscopic CG generation. Despite that stereo images are very similar to each other, they are rendered and manipulated independently. Additional requirements for disparity control specific to stereo images lead to even greater inefficiency. This paper proposes a method to reduce the inefficiency accompanied in the creation of a stereoscopic image. The system automatically generates an optimized single image representation of the entire visible area from both cameras. The single image can be easily manipulated with conventional techniques, as it is spatially smooth and maintains the original shapes of scene objects. In addition, a stereo image pair can be easily generated with an arbitrary disparity setting. These convenient and efficient features are achieved by the automatic generation of a stereo camera pair, robust occlusion detection with a pair of Z‐buffers, an optimization method for spatial smoothness, and stereo image pair generation with a non‐linear disparity adjustment. Experiments show that our technique dramatically improves the efficiency of stereoscopic image creation while preserving the quality of the results. 相似文献
8.
We propose a new adaptive algorithm for determining virtual point lights (VPL) in the scope of real‐time instant radiosity methods, which use a limited number of VPLs. The proposed method is based on Metropolis‐Hastings sampling and exhibits better temporal coherence of VPLs, which is particularly important for real‐time applications dealing with dynamic scenes. We evaluate the properties of the proposed method in the context of the algorithm based on imperfect shadow maps and compare it with the commonly used inverse transform method. The results indicate that the proposed technique can significantly reduce the temporal flickering artifacts even for scenes with complex materials and textures. Further, we propose a novel splatting scheme for imperfect shadow maps using hardware tessellation. This scheme significantly improves the rendering performance particularly for complex and deformable scenes. We thoroughly analyze the performance of the proposed techniques on test scenes with detailed materials, moving camera, and deforming geometry. 相似文献
9.
We introduce a screen‐space statistical filtering method for real‐time rendering with global illumination. It is inspired by statistical filtering proposed by Meyer et al. to reduce the noise in global illumination over a period of time by estimating the principal components from all rendered frames. Our work extends their method to achieve nearly real‐time performance on modern GPUs. More specifically, our method employs the candid covariance‐free incremental PCA to overcome several limitations of the original algorithm by Meyer et al., such as its high computational cost and memory usage that hinders its implementation on GPUs. By combining the reprojection and per‐pixel weighting techniques, our method handles the view changes and object movement in dynamic scenes as well. 相似文献
10.
Existing synthesis methods for closely interacting virtual characters relied on user‐specified constraints such as the reaching positions and the distance between body parts. In this paper, we present a novel method for synthesizing new interacting motion by composing two existing interacting motion samples without the need to specify the constraints manually. Our method automatically detects the type of interactions contained in the inputs and determines a suitable timing for the interaction composition by analyzing the spacetime relationships of the input characters. To preserve the features of the inputs in the synthesized interaction, the two inputs will be aligned and normalized according to the relative distance and orientation of the characters from the inputs. With a linear optimization method, the output is the optimal solution to preserve the close interaction of two characters and the local details of individual character behavior. The output animations demonstrated that our method is able to create interactions of new styles that combine the characteristics of the original inputs. 相似文献
11.
We present a new method to create and preserve the turbulent details generated around moving objects in SPH fluid. In our approach, a high‐resolution overlapping grid is bounded to each object and translates with the object. The turbulence formation is modeled by resolving the local flow around objects using a hybrid SPH‐FLIP method. Then these vortical details are carried on SPH particles flowing through the local region and preserved in the global field in a synthetic way. Our method provides a physically plausible way to model the turbulent details around both rigid and deformable objects in SPH fluid, and can efficiently produce animations of complex gaseous phenomena with rich visual details. 相似文献
12.
Christian Eisenacher Gregory Nichols Andrew Selle Brent Burley 《Computer Graphics Forum》2013,32(4):125-132
Ray‐traced global illumination (GI) is becoming widespread in production rendering but incoherent secondary ray traversal limits practical rendering to scenes that fit in memory. Incoherent shading also leads to intractable performance with production‐scale textures forcing renderers to resort to caching of irradiance, radiosity, and other values to amortize expensive shading. Unfortunately, such caching strategies complicate artist workflow, are difficult to parallelize effectively, and contend for precious memory. Worse, these caches involve approximations that compromise quality. In this paper, we introduce a novel path‐tracing framework that avoids these tradeoffs. We sort large, potentially out‐of‐core ray batches to ensure coherence of ray traversal. We then defer shading of ray hits until we have sorted them, achieving perfectly coherent shading and avoiding the need for shading caches. 相似文献
13.
Thomas Engelhardt Jan Novák Thorsten‐W. Schmidt Carsten Dachsbacher 《Computer Graphics Forum》2012,31(7):2145-2154
In this paper we present a novel method for high‐quality rendering of scenes with participating media. Our technique is based on instant radiosity, which is used to approximate indirect illumination between surfaces by gathering light from a set of virtual point lights (VPLs). It has been shown that this principle can be applied to participating media as well, so that the combined single scattering contribution of VPLs within the medium yields full multiple scattering. As in the surface case, VPL methods for participating media are prone to singularities, which appear as bright “splotches” in the image. These artifacts are usually countered by clamping the VPLs' contribution, but this leads to energy loss within the short‐distance light transport. Bias compensation recovers the missing energy, but previous approaches are prohibitively costly. We investigate VPL‐based methods for rendering scenes with participating media, and propose a novel and efficient approximate bias compensation technique. We evaluate our technique using various test scenes, showing it to be visually indistinguishable from ground truth. 相似文献
14.
The efficient evaluation of visibility in a three‐dimensional scene is a longstanding problem in computer graphics. Visibility evaluations come in many different forms: figuring out what object is visible in a pixel; determining whether a point is visible to a light source; or evaluating the mutual visibility between 2 surface points. This paper provides a new, experimental view on visibility, based on a probabilistic evaluation of the visibility function. Instead of checking the visibility against all possible intervening geometry the visibility between 2 points is now evaluated by testing only a random subset of objects. The result is not a Boolean value that is either 0 or 1, but a numerical value that can even be negative. Because we use the visibility evaluation as part of the integrand in illumination computations, the probabilistic evaluation of visibility becomes part of the Monte Carlo procedure of estimating the illumination integral, and results in an unbiased computation of illumination values in the scene. Moreover, the number of intersections tests for any given ray is decreased, since only a random selection of geometric primitives is tested. Although probabilistic visibility is an experimental and new idea, we present a practical algorithm for direct illumination that uses the probabilistic nature of visibility evaluations. 相似文献
15.
Eugene d'Eon Guillaume Francois Martin Hill Joe Letteri Jean‐Marie Aubry 《Computer Graphics Forum》2011,30(4):1181-1187
We present a reflectance model for dielectric cylinders with rough surfaces such as human hair fibers. Our model is energy conserving and can evaluate arbitrarily many orders of internal reflection. Accounting for compression and contraction of specular cones produces a new longitudinal scattering function which is non‐Gaussian and includes an off‐specular peak. Accounting for roughness in the azimuthal direction leads to an integral across the hair fiber which is efficiently evaluated using a Gaussian quadrature. Solving cubic equations is avoided, caustics are included in the model in a consistent fashion, and more accurate colors are predicted by considering many internal pathways. 相似文献
16.
Producing traditional animation is a laborious task where the key drawings are first drawn by artists and thereafter inbetween drawings are created, whether it is by hand or computer‐assisted. Auto‐inbetweening of these 2D key drawings by computer is a non‐trivial task as 3D depths are missing. An alternate approach is to generate all the drawings by extracting lines directly from animated 3D models frame by frame, concatenating and rendering them together into an animation. However, animation quality generated using this straightforward method bears two problems. Firstly, the animation contains unsatisfactory visual artifacts such as line flickering and popping. This is especially pronounced when the lines are extracted using high‐order derivatives, such as ridges and valleys, from 3D models represented in triangle meshes. Secondly, there is a lack of temporal continuity as each drawing is generated without taking its neighboring drawings into consideration. In this paper, we propose an improved approach over the straightforward method by transferring extracted 3D line drawings of each frame into individual 3D lines and processing them along the time domain. Our objective is to minimize the visual artifacts and incorporate temporal relationship of individual lines throughout the entire animation sequence. This is achieved by creating correspondent trajectory of each line from each frame and applying global optimization on each trajectory. To realize this target, we present a fully automatic novel approach, which consists of (1) a line matching algorithm, (2) an optimizing algorithm, taking into account both the variations of numbers and lengths of 3D lines in each frame, and (3) a robust tracing method for transferring collections of line segments extracted from the 3D models into individual lines. We evaluate our approach on several animated model sequences to demonstrate its effectiveness in producing line drawing animations with temporal coherence. 相似文献
17.
Simulation of light transport through lens systems plays an important role in graphics. While basic imaging properties can be conveniently derived from linear models (like ABCD matrices), these approximations fail to describe nonlinear effects and aberrations that arise in real optics. Such effects can be computed by proper ray tracing, for which, however, finding suitable sampling and filtering strategies is often not a trivial task. Inspired by aberration theory, which describes the deviation from the linear ray transfer in terms of wavefront distortions, we propose a ray‐space formulation for nonlinear effects. In particular, we approximate the analytical solution to the ray tracing problem by means of a Taylor expansion in the ray parameters. This representation enables a construction‐kit approach to complex optical systems in the spirit of matrix optics. It is also very simple to evaluate, which allows for efficient execution on CPU and GPU alike, including the computation of mixed derivatives of any order. We evaluate fidelity and performance of our polynomial model, and show applications in high‐quality offline rendering and at interactive frame rates. 相似文献
18.
Skinning is a simple yet popular deformation technique combining compact storage with efficient hardware accelerated rendering. While skinned meshes (such as virtual characters) are traditionally created by artists, previous work proposes algorithms to construct skinning automatically from a given vertex animation. However, these methods typically perform well only for a certain class of input sequences and often require long pre‐processing times. We present an algorithm based on iterative coordinate descent optimization which handles arbitrary animations and produces more accurate approximations than previous techniques, while using only standard linear skinning without any modifications or extensions. To overcome the computational complexity associated with the iterative optimization, we work in a suitable linear subspace (obtained by quick approximate dimensionality reduction) and take advantage of the typically very sparse vertex weights. As a result, our method requires about one or two orders of magnitude less pre‐processing time than previous methods. 相似文献
19.
We introduce a set of robust importance sampling techniques which allow efficient calculation of direct and indirect lighting from arbitrary light sources in both homogeneous and heterogeneous media. We show how to distribute samples along a ray proportionally to the incoming radiance for point and area lights. In heterogeneous media, we decouple ray marching from light calculations by computing a representation of the transmittance function that can be quickly evaluated during sampling, at the cost of a small amount of bias. This representation also allows the calculation of another probability density function which can direct samples to regions most likely to scatter light. These techniques are orthogonal and can be combined via multiple importance sampling to further reduce variance. Our method has very modest per‐ray memory requirements and does not require any preprocessing, making it simple to integrate into production ray tracing based renderers. 相似文献
20.
We present metalights, a novel Virtual Point Light (VPL) encapsulating structure which enhances classic interleaved shading by improving VPL sampling, based on few initial screen space samples to estimate VPL contribution to current view. Our method leads to important noise variance reduction in the final picture by only adding a small fraction of computation. The implementation is straight‐forward and well adapted to both CPU and GPU‐based engines. We also present different image‐space assignment schemes for the VPL subsets to break the regularity of the noise pattern or to adapt it to simple antialiasing. 相似文献