首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Existing techniques for fast, high-quality rendering of translucent materials often fix BSSRDF parameters at precomputation time. We present a novel method for accurate rendering and relighting of translucent materials that also enables real-time editing and manipulation of homogeneous diffuse BSSRDFs. We first apply PCA analysis on diffuse multiple scattering to derive a compact basis set, consisting of only twelve 1D functions. We discovered that this small basis set is accurate enough to approximate a general diffuse scattering profile. For each basis, we then precompute light transport data representing the translucent transfer from a set of local illumination samples to each rendered vertex. This local transfer model allows our system to integrate a variety of lighting models in a single framework, including environment lighting, local area lights, and point lights. To reduce the PRT data size, we compress both the illumination and spatial dimensions using efficient nonlinear wavelets. To edit material properties in real-time, a user-defined diffuse BSSRDF is dynamically projected onto our precomputed basis set, and is then multiplied with the translucent transfer information on the fly. Using our system, we demonstrate realistic, real-time translucent material editing and relighting effects under a variety of complex, dynamic lighting scenarios.  相似文献   

2.
This paper introduces a new method for simulating homogeneous subsurface light transport in translucent objects. Our approach is based on irradiance convolutions over a multi‐layered representation of the volume for light transport, which is general enough to obtain plausible depictions of translucent objects based on the diffusion approximation. We aim at providing an efficient physically based algorithm that can apply arbitrary diffusion profiles to general geometries. We obtain accurate results for a wide range of materials, on par with the hierarchical method by Jensen and Buhler.  相似文献   

3.
Real-time homogenous translucent material editing   总被引:4,自引:0,他引:4  
This paper presents a novel method for real-time homogenous translucent material editing under fixed illumination. We consider the complete analytic BSSRDF model proposed by Jensen et al. [ [JMLH01] ], including both multiple scattering and single scattering. Our method allows the user to adjust the analytic parameters of BSSRDF and provides high-quality, real-time rendering feedback. Inspired by recently developed Precomputed Radiance Transfer (PRT) techniques, we approximate both the multiple scattering diffuse reflectance function and the single scattering exponential attenuation function in the analytic model using basis functions, so that re-computing the outgoing radiance at each vertex as parameters change reduces to simple dot products. In addition, using a non-uniform piecewise polynomial basis, we are able to achieve smaller approximation error than using bases adopted in previous PRT-based works, such as spherical harmonics and wavelets. Using hardware acceleration, we demonstrate that our system generates images comparable to [ [JMLH01] ]at real-time frame-rates.  相似文献   

4.
Rendering translucent materials in real time is usually done by using surface diffusion and/or (translucent) shadow maps. The downsides of these approaches are, that surface diffusion cannot handle translucency effects that show up when rendering thin objects, and that translucent shadow maps are only available for point light sources. Furthermore, translucent shadow maps introduce limitations to shadow mapping techniques exploiting the same maps. In this paper we present a novel approach for rendering translucent materials at interactive frame rates. Our approach allows for an efficient calculation of translucency with native support for general illumination conditions, especially area and environment lighting, at high accuracy. The proposed technique's only parameter is the used diffusion profile, and thus it works out of the box without any parameter tuning. Furthermore, it can be used in combination with any existing surface diffusion techniques to add translucency effects. Our approach introduces Spatial Adjacency Maps that depend on precalculations to be done for fixed meshes. We show that these maps can be updated in real time to also handle deforming meshes and that our results are of superior quality as compared to other well known real‐time techniques for rendering translucency.  相似文献   

5.
In this paper, we extend the concept of pre‐filtered shadow mapping to stochastic rasterization, enabling real‐time rendering of soft shadows from planar area lights. Most existing soft shadow mapping methods lose important visibility information by relying on pinhole renderings from an area light source, providing plausible results only for small light sources. Since we sample the entire 4D shadow light field stochastically, we are able to closely approximate shadows of large area lights as well. In order to efficiently reconstruct smooth shadows from this sparse data, we exploit the analogy of soft shadow computation to rendering defocus blur, and introduce a multiplane pre‐filtering algorithm. We demonstrate how existing pre‐filterable approximations of the visibility function, such as variance shadow mapping, can be extended to four dimensions within our framework.  相似文献   

6.
We present a novel algorithm, IlluminationCut, for rendering images using the many‐lights framework. It handles any light source that can be approximated with virtual point lights (VPLs) as well as highly glossy materials. The algorithm extends the Multidimensional Lightcuts technique by effectively creating an illumination‐aware clustering of the product‐space of the set of points to be shaded and the set of VPLs. Additionally, the number of visibility queries for each product‐space cluster is reduced by using an adaptive sampling technique. Our framework is flexible and achieves around 3 – 6 times speedup over previous state‐of‐the‐art methods.  相似文献   

7.
We present photon beam diffusion, an efficient numerical method for accurately rendering translucent materials. Our approach interprets incident light as a continuous beam of photons inside the material. Numerically integrating diffusion from such extended sources has long been assumed computationally prohibitive, leading to the ubiquitous single‐depth dipole approximation and the recent analytic sum‐of‐Gaussians approach employed by Quantized Diffusion. In this paper, we show that numerical integration of the extended beam is not only feasible, but provides increased speed, flexibility, numerical stability, and ease of implementation, while retaining the benefits of previous approaches. We leverage the improved diffusion model, but propose an efficient and numerically stable Monte Carlo integration scheme that gives equivalent results using only 3–5 samples instead of 20–60 Gaussians as in previous work. Our method can account for finite and multi‐layer materials, and additionally supports directional incident effects at surfaces. We also propose a novel diffuse exact single‐scattering term which can be integrated in tandem with the multi‐scattering approximation. Our numerical approach furthermore allows us to easily correct inaccuracies of the diffusion model and even combine it with more general Monte Carlo rendering algorithms. We provide practical details necessary for efficient implementation, and demonstrate the versatility of our technique by incorporating it on top of several rendering algorithms in both research and production rendering systems.  相似文献   

8.
Rendering animations of scenes with deformable objects, camera motion, and complex illumination, including indirect lighting and arbitrary shading, is a long‐standing challenge. Prior work has shown that complex lighting can be accurately approximated by a large collection of point lights. In this formulation, rendering of animation sequences becomes the problem of efficiently shading many surface samples from many lights across several frames. This paper presents a tensor formulation of the animated many‐light problem, where each element of the tensor expresses the contribution of one light to one pixel in one frame. We sparsely sample rows and columns of the tensor, and introduce a clustering algorithm to select a small number of representative lights to efficiently approximate the animation. Our algorithm achieves efficiency by reusing representatives across frames, while minimizing temporal flicker. We demonstrate our algorithm in a variety of scenes that include deformable objects, complex illumination and arbitrary shading and show that a surprisingly small number of representative lights is sufficient for high quality rendering. We believe out algorithm will find practical use in applications that require fast previews of complex animation.  相似文献   

9.
We present a novel appearance model for paper. Based on our appearance measurements for matte and glossy paper, we find that paper exhibits a combination of subsurface scattering, specular reflection, retroreflection, and surface sheen. Classic microfacet and simple diffuse reflection models cannot simulate the double‐sided appearance of a thin layer. Our novel BSDF model matches our measurements for paper and accounts for both reflection and transmission properties. At the core of the BSDF model is a method for converting a multi‐layer subsurface scattering model (BSSRDF) into a BSDF, which allows us to retain physically‐based absorption and scattering parameters obtained from the measurements. We also introduce a method for computing the amount of light available for subsurface scattering due to transmission through a rough dielectric surface. Our final model accounts for multiple scattering, single scattering, and surface reflection and is capable of rendering paper with varying levels of roughness and glossiness on both sides.  相似文献   

10.
Instant radiosity methods rely on using a large number of virtual point lights (VPLs) to approximate global illumination. Efficiency considerations require grouping the VPLs into a small number of clusters that are treated as individual lights with respect to each point to be shaded. Two examples of clustering algorithms are Lightcuts [WFA*05] and LightSlice [OP11]. In this work, we use the notion of geometric separatedness of point sets as a basis for a data structure for pre‐computing and compactly storing a set of candidate VPL clusterings. Our data structure is created prior to rendering, is view‐independent and relies only on geometric and radiometric information. For any point to be shaded, we show that a suitable clustering of the VPLs can be efficiently extracted from this data structure. We develop the above framework into an accurate and efficient clustering algorithm based on well‐separated pair decompositions which outperforms earlier work in speed and/or quality for diffuse scenes.  相似文献   

11.
The visual world around us displays a rich set of light effects because of translucent and participating media. It is hard and time consuming to render these effects with scattering, caustic, and shaft because of the complex interaction between light and different media. This paper presents a new rendering method based on adaptive lattice for lighting participating media of translucent materials such as marble, wax, and shaft light. Firstly, on the basis of the lattice‐based photon tracing model, multi‐scale hierarchical lattice was constructed by mixed lattice types sampling combined cubic Cartesian and face‐centered cubic with view‐dependent adaptive resolution. Then, an adaptive method to trace diffuse photons and marked specular photons with different phase functions was suggested. Multiple lights and heterogeneous materials were also considered here. Further, the mixed rendering method and GPU accelerate technology were introduced to render different light effects under different participating media. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Glossy to glossy reflections are lights bounced between glossy surfaces. Such directional light transports are important for humans to perceive glossy materials, but difficult to simulate. This paper proposes a new method for rendering screen‐space glossy to glossy reflections in realtime. We use spherical von Mises‐Fisher (vMF) distributions to model glossy BRDFs at surfaces, and employ screen space directional occlusion (SSDO) rendering framework to trace indirect light transports bounced in the screen space. As our main contributions, we derive a new parameterization of vMF distribution so as to convert the non‐linear fit of multiple vMF distributions into a linear sum in the new space. Then, we present a new linear filtering technique to build MIP‐maps on glossy BRDFs, which allows us to create filtered radiance transfer functions at runtime, and efficiently estimate indirect glossy to glossy reflections. We demonstrate our method in a realtime application for rendering scenes with dynamic glossy objects. Compared with screen space directional occlusion, our approach only requires one extra texture and has a negligible overhead, 3% ~ 6% loss at frame rate, but enables glossy to glossy reflections.  相似文献   

13.
Lighting design plays a crucial role in indoor lighting design, computer cinematograph and many other applications. Computer‐assisted lighting design aims to find a lighting configuration that best approximates the illumination effect specified by designers. In this paper, we present an automatic approach for lighting design, in which discrete and continuous optimization of the lighting configuration, including the number, intensity, and position of lights, are achieved. Our lighting design algorithm consists of two major steps. The first step estimates an initial lighting configuration by light sampling and clustering. The initial light clusters are then recursively merged to form a light hierarchy. The second step optimizes the lighting configuration by alternatively selecting a light cut on the light hierarchy to determine the number of representative lights and optimizing the lighting parameters using the simplex method. To speed up the optimization computation, only illumination at scene vertices that are important to rendering are sampled and taken into account in the optimization. Using the proposed approach, we develop a lighting design system that can compute appropriate lighting configurations to generate the illumination effects iteratively painted and modified by a designer interactively.  相似文献   

14.
We present Forward Light Cuts, a novel approach to real‐time global illumination using forward rendering techniques. We focus on unshadowed diffuse interactions for the first indirect light bounce in the context of large models such as the complex scenes usually encountered in CAD application scenarios. Our approach efficiently generates and uses a multiscale radiance cache by exploiting the geometry‐specific stages of the graphics pipeline, namely the tessellator unit and the geometry shader To do so, we assimilate virtual point lights to the scene's triangles and design a stochastic decimation process chained with a partitioning strategy that accounts for both close‐by strong light reflections, and distant regions from which numerous virtual point lights collectively contribute strongly to the end pixel. Our probabilistic solution is supported by a mathematical analysis and a number of experiments covering a wide range of application scenarios. As a result, our algorithm requires no precomputation of any kind, is compatible with dynamic view points, lighting condition, geometry and materials, and scales to tens of millions of polygons on current graphics hardware.  相似文献   

15.
We present an importance sampling method for the bidirectional scattering distribution function (bsdf) of hair. Our method is based on the multi‐lobe hair scattering model presented by Sadeghi et al. [ [SPJT10] ]. We reduce noise by drawing samples from a distribution that approximates the bsdf well. Our algorithm is efficient and easy to implement, since the sampling process requires only the evaluation of a few analytic functions, with no significant memory overhead or need for precomputation. We tested our method in a research raytracer and a production renderer based on micropolygon rasterization. We show significant improvements for rendering direct illumination using multiple importance sampling and for rendering indirect illumination using path tracing.  相似文献   

16.
Stereo Light Probe   总被引:1,自引:0,他引:1  
In this paper we present a practical, simple and robust method to acquire the spatially‐varying illumination of a real‐world scene. The basic idea of the proposed method is to acquire the radiance distribution of the scene using high‐dynamic range images of two reflective balls. The use of two light probes instead of a single one allows to estimate, not only the direction and intensity of the light sources, but also the actual position in space of the light sources. To robustly achieve this goal we first rectify the two input spherical images, then, using a region‐based stereo matching algorithm, we establish correspondences and compute the position of each light. The radiance distribution so obtained can be used for augmented reality applications, photo‐realistic rendering and accurate reflectance properties estimation. The accuracy and the effectiveness of the method have been tested by measuring the computed light position and rendering synthetic version of a real object in the same scene. The comparison with standard method that uses a simple spherical lighting environment is also shown.  相似文献   

17.
This paper proposes a method for efficiently rendering indirect highlights. Indirect highlights are caused by the primary light source reflecting off two or more glossy surfaces. Accurately simulating such highlights is important to convey the realistic appearance of materials such as chrome and shiny metal. Our method models the glossy BRDF at a surface point as a directional distribution, using a spherical von Mises‐Fisher (vMF) distribution. As our main contribution, we merge multiple vMFs into a combined multimodal distribution. This effectively creates a filtered radiance response function, allowing us to efficiently estimate indirect highlights. We demonstrate our method in a near‐interactive application for rendering scenes with highly glossy objects. Our results produce realistic reflections under both local and environment lighting.  相似文献   

18.
Visualizing Underwater Ocean Optics   总被引:1,自引:0,他引:1  
Simulating the in‐water ocean light field is a daunting task. Ocean waters are one of the richest participating media, where light interacts not only with water molecules, but with suspended particles and organic matter as well. The concentration of each constituent greatly affects these interactions, resulting in very different hues. Inelastic scattering events such as fluorescence or Raman scattering imply energy transfers that are usually neglected in the simulations. Our contributions in this paper are a bio‐optical model of ocean waters suitable for computer graphics simulations, along with an improved method to obtain an accurate solution of the in‐water light field based on radiative transfer theory. The method provides a link between the inherent optical properties that define the medium and its apparent optical properties, which describe how it looks. The bio‐optical model of the ocean uses published data from oceanography studies. For inelastic scattering we compute all frequency changes at higher and lower energy values, based on the spectral quantum efficiency function of the medium. The results shown prove the usability of the system as a predictive rendering algorithm. Areas of application for this research span from underwater imagery to remote sensing; the resolution method is general enough to be usable in any type of participating medium simulation.  相似文献   

19.
The popularity of many‐light rendering, which converts complex global illumination computations into a simple sum of the illumination from virtual point lights (VPLs), for predictive rendering has increased in recent years. A huge number of VPLs are usually required for predictive rendering at the cost of extensive computational time. While previous methods can achieve significant speedup by clustering VPLs, none of these previous methods can estimate the total errors due to clustering. This drawback imposes on users tedious trial and error processes to obtain rendered images with reliable accuracy. In this paper, we propose an error estimation framework for many‐light rendering. Our method transforms VPL clustering into stratified sampling combined with confidence intervals, which enables the user to estimate the error due to clustering without the costly computing required to sum the illumination from all the VPLs. Our estimation framework is capable of handling arbitrary BRDFs and is accelerated by using visibility caching, both of which make our method more practical. The experimental results demonstrate that our method can estimate the error much more accurately than the previous clustering method.  相似文献   

20.
半透明物体透明效果的真实感绘制是近年来研究的热点,提出一种针对半透明物体漫散射效果的实时真实感绘制与材质动态编辑方法--基于双向表面散射反射率函数(BSSRDF)的Dipole近似.通过主元分析将Dipole近似中的漫散射材质甬数分解为与形状相关甬数和与半透明材质相关函数的乘积形式;利用该分解表示,在预辐射传输的实时真实感绘制框架下,通过对散射传输的预计算来实现在多种光源环境下对半透明物体材质的实时编辑.此外,还提出一种对预计算辐射传输数据在空域上进行二次小波压缩的方法,利用表面点在空间分布位置的相关性,在保证绘制质量的前提下,大大压缩了数据,提升了绘制效率.实验结果表明,文中方法可以生成具有高度真实感的半透明效果并保证实时的绘制速度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号