首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we present a hybrid approach to reconstruct hair dynamics from multi‐view video sequences, captured under uncontrolled lighting conditions. The key of this method is a refinement approach that combines image‐based reconstruction techniques with physically based hair simulation. Given an initially reconstructed sequence of hair fiber models, we develop a hair dynamics refinement system using particle‐based simulation and incompressible fluid simulation. The system allows us to improve reconstructed hair fiber motions and complete missing fibers caused by occlusion or tracking failure. The refined space‐time hair dynamics are consistent with video inputs and can be also used to generate novel hair animations of different hair styles. We validate this method through various real hair examples.  相似文献   

2.
We present a set of techniques for the synthesis of artificial images that depict branching structures like rivers, cracks, lightning, mountain ranges, or blood vessels. The central idea is to build a statistical model that captures the characteristic bending and branching structure from example images. Then a new skeleton structure is synthesized and the final output image is composed from image fragments of the original input images. The synthesis part of our algorithm runs mostly automatic but it optionally allows the user to control the process in order to achieve a specific result. The combination of the statistical bending and branching model with sophisticated fragment‐based image synthesis corresponds to a multi‐resolution decomposition of the underlying branching structure into the low frequency behavior (captured by the statistical model) and the high frequency detail (captured by the image detail in the fragments). This approach allows for the synthesis of realistic branching structures, while at the same time preserving important textural details from the original image.  相似文献   

3.
Bridges deteriorate over their life cycles and require continuous maintenance to ensure their structural integrity, and in turn, the safety of the public. Maintaining bridges is a multi‐faceted operation that requires both domain knowledge and analytics techniques over large data sources. Although most existing bridge management systems (BMS) are very efficient at data storage, they are not as effective at providing analytical capabilities or as flexible at supporting different inspection technologies. In this paper, we present a visual analytics system that extends the capability of current BMSs. Based on a nation‐wide survey and our interviews with bridge managers, we designed our system to be customizable so that it can provide interactive exploration, information correlation, and domain‐oriented data analysis. When tested by bridge managers of the U.S. Department of Transportation, we validated that our system provides bridge managers with the necessary features for performing in‐depth analysis of bridges from a variety of perspectives that are in accordance to their typical workflow.  相似文献   

4.
Smart deformation and warping tools play an important part in modern day geometric modeling systems. They allow existing content to be stretched or scaled while preserving visually salient information. To date, these techniques have primarily focused on preserving local shape details, not taking into account important global structures such as symmetry and line features. In this work we present a novel framework that can be used to preserve the global structure in images and vector art. Such structures include symmetries and the spatial relations in shapes and line features in an image. Central to our method is a new formulation of preserving structure as an optimization problem. We use novel optimization strategies to achieve the interactive performance required by modern day modeling applications. We demonstrate the effectiveness of our framework by performing structure preservation deformation of images and complex vector art at interactive rates.  相似文献   

5.
During the development of car engines, regression models that are based on machine learning techniques are increasingly important for tasks which require a prediction of results in real‐time. While the validation of a model is a key part of its identification process, existing computation‐ or visualization‐based techniques do not adequately support all aspects of model validation. The main contribution of this paper is an interactive approach called HyperMoVal that is designed to support multiple tasks related to model validation: 1) comparing known and predicted results, 2) analyzing regions with a bad fit, 3) assessing the physical plausibility of models also outside regions covered by validation data, and 4) comparing multiple models. The key idea is to visually relate one or more n‐dimensional scalar functions to known validation data within a combined visualization. HyperMoVal lays out multiple 2D and 3D sub‐projections of the n‐dimensional function space around a focal point. We describe how linking HyperMoVal to other views further extends the possibilities for model validation. Based on this integration, we discuss steps towards supporting the entire workflow of identifying regression models. An evaluation illustrates a typical workflow in the application context of car‐engine design and reports general feedback of domain experts and users of our approach. These results indicate that our approach significantly accelerates the identification of regression models and increases the confidence in the overall engineering process.  相似文献   

6.
We present a stylized scheme that produces pencil drawings in a range of styles from an image. To produce controllable pencil drawing effects and remedy the problems of existing convolution‐based schemes, we develop a swing bilateral LIC (SBL) filter. Our first approach to express the styled pencil drawings is to control the directions of pencil strokes that depicts both shapes and smooth tone. Another approach is to produce colors of pencil drawings by sampling colors from real color pencils. The third approach is to mimic the artistic technique that increases the details of drawings in a progressive manner. We present drawings in several styles and compare some of them directly with illustrations taken from an artists' work.  相似文献   

7.
Salience detection is a principle mechanism to facilitate visual attention. A good visualization guides the observer's attention to the relevant aspects of the representation. Hence, the distribution of salience over a visualization image is an essential measure of the quality of the visualization. We describe a method for computing such a metric for a visualization image in the context of a given dataset. We show how this technique can be used to analyze a visualization's salience, improve an existing visualization, and choose the best representation from a set of alternatives. The usefulness of this proposed metric is illustrated using examples from information visualization, volume visualization and flow visualization.  相似文献   

8.
Most 3D vector field visualization techniques suffer from the problem of visual clutter, and it remains a challenging task to effectively convey both directional and structural information of 3D vector fields. In this paper, we present a novel visualization framework that combines the advantages of clustering methods and illustrative rendering techniques to generate a concise and informative depiction of complex flow structures. Given a 3D vector field, we first generate a number of streamlines covering the important regions based on an entropy measurement. Then we decompose the streamlines into different groups based on a categorization of vector information, wherein the streamline pattern in each group is ensured to be coherent or nearly coherent. For each group, we select a set of representative streamlines and render them in an illustrative fashion to enhance depth cues and succinctly show local flow characteristics. The results demonstrate that our approach can generate a visualization that is relatively free of visual clutter while facilitating perception of salient information of complex vector fields.  相似文献   

9.
We introduce medial diffusion for the matching of undersampled shapes undergoing a nonrigid deformation. We construct a diffusion process with respect to the medial axis of a shape, and use the quantity of heat diffusion as a measure which is both tolerant of missing data and approximately invariant to nonrigid deformations. A notable aspect of our approach is that we do not define the diffusion on the shape's medial axis, or similar medial representation. Instead, we construct the diffusion process directly on the shape. This permits the diffusion process to better capture surface features, such as varying spherical and cylindrical parts, as well as combine with other surface‐based diffusion processes. We show how to use medial diffusion to detect intrinsic symmetries, and for computing correspondences between pairs of shapes, wherein shapes contain substantial missing data.  相似文献   

10.
We present a graph algorithm to find fundamental cycles aligned with the principal curvature directions of a surface. Specifically, we use the tree‐cotree decomposition of graphs embedded in manifolds, guided with edge weights, in order to produce these cycles. Our algorithm is very quick compared to existing methods, with a worst case running time of O(n log n+gn) where n is the number of faces and g is the surface genus. Further, its flexibility to accommodate different weighting functions and to handle boundaries may be used to produce cycles suitable for a variety of applications and models.  相似文献   

11.
    
This paper proposes a new shadow removal approach for input single natural image by using subregion matching illumination transfer We first propose an effective and automatic shadow detection algorithm incorporating global successive thresholding scheme and local boundary refinement. Then we present a novel shadow removal algorithm by performing illumination transfer on the matched subregion pairs between the shadow regions and non‐shadow regions, and this method can process complex images with different kinds of shadowed texture regions and illumination conditions. In addition, we develop an efficient shadow boundary processing method by using alpha matte interpolation, which produces seamless transition between the shadow and non‐shadow regions. Experimental results demonstrate the capabilities of our algorithm in both the shadow removal quality and performance.  相似文献   

12.
A geodesic is a parameterized curve on a Riemannian manifold governed by a second order partial differential equation. Geodesics are notoriously unstable: small perturbations of the underlying manifold may lead to dramatic changes of the course of a geodesic. Such instability makes it difficult to use geodesics in many applications, in particular in the world of discrete geometry. In this paper, we consider a geodesic as the indicator function of the set of the points on the geodesic. From this perspective, we present a new concept called fuzzy geodesics and show that fuzzy geodesics are stable with respect to the Gromov‐Hausdorff distance. Based on fuzzy geodesics, we propose a new object called the intersection configuration for a set of points on a shape and demonstrate its effectiveness in the application of finding consistent correspondences between sparse sets of points on shapes differing by extreme deformations.  相似文献   

13.
Reconstructing a surface mesh from a set of discrete point samples is a fundamental problem in geometric modeling. It becomes challenging in presence of ‘singularities’ such as boundaries, sharp features, and non‐manifolds. A few of the current research in reconstruction have addressed handling some of these singularities, but a unified approach to handle them all is missing. In this paper we allow the presence of various singularities by requiring that the sampled object is a collection of smooth surface patches with boundaries that can meet or intersect. Our algorithm first identifies and reconstructs the features where singularities occur. Next, it reconstructs the surface patches containing these feature curves. The identification and reconstruction of feature curves are achieved by a novel combination of the Gaussian weighted graph Laplacian and the Reeb graphs. The global reconstruction is achieved by a method akin to the well known Cocone reconstruction, but with weighted Delaunay triangulation that allows protecting the feature samples with balls. We provide various experimental results to demonstrate the effectiveness of our feature‐preserving singular surface reconstruction algorithm.  相似文献   

14.
We present an interactive illustrative visualization method inspired by traditional pen‐and‐ink illustration styles. Specifically, we explore how to provide context around DTI fiber tracts in the form of surfaces of the brain, the skull, or other objects such as tumors. These contextual surfaces are derived from either segmentation data or generated using interactive iso‐surface extraction and are rendered with a flexible, slice‐based hatching technique, controlled with ambient occlusion. This technique allows us to produce a consistent and frame‐coherent appearance with precise control over the lines. In addition, we provide context through cutting planes onto which we render gray matter with stippling. Together, our methods not only facilitate the interactive exploration and illustration of brain fibers within their anatomical context but also allow us to produce high‐quality images for print reproduction. We provide evidence for the success of our approach with an informal evaluation with domain experts.  相似文献   

15.
This paper presents a straightforward algorithm for constructing connections on discrete surfaces that are as smooth as possible everywhere but on a set of isolated singularities with given index. We compute these connections by solving a single linear system built from standard operators. The solution can be used to design rotationally symmetric direction fields with user‐specified singularities and directional constraints.  相似文献   

16.
Biologists pioneering the new field of comparative functional genomics attempt to infer the mechanisms of gene regulation by looking for similarities and differences of gene activity over time across multiple species. They use three kinds of data: functional data such as gene activity measurements, pathway data that represent a series of reactions within a cellular process, and phylogenetic relationship data that describe the relatedness of species. No existing visualization tool can visually encode the biologically interesting relationships between multiple pathways, multiple genes, and multiple species. We tackle the challenge of visualizing all aspects of this comparative functional genomics dataset with a new interactive tool called Pathline. In addition to the overall characterization of the problem and design of Pathline, our contributions include two new visual encoding techniques. One is a new method for linearizing metabolic pathways that provides appropriate topological information and supports the comparison of quantitative data along the pathway. The second is the curvemap view, a depiction of time series data for comparison of gene activity and metabolite levels across multiple species. Pathline was developed in close collaboration with a team of genomic scientists. We validate our approach with case studies of the biologists’ use of Pathline and report on how they use the tool to confirm existing findings and to discover new scientific insights.  相似文献   

17.
Due to 3D occlusion, the specification of proper opacities in direct volume rendering is a time‐consuming and unintuitive process. The visibility histograms introduced by Correa and Ma reflect the effect of occlusion by measuring the influence of each sample in the histogram to the rendered image. However, the visibility is defined on individual samples, while volume exploration focuses on conveying the spatial relationships between features. Moreover, the high computational cost and large memory requirement limits its application in multi‐dimensional transfer function design. In this paper, we extend visibility histograms to feature visibility, which measures the contribution of each feature in the rendered image. Compared to visibility histograms, it has two distinctive advantages for opacity specification. First, the user can directly specify the visibilities for features and the opacities are automatically generated using an optimization algorithm. Second, its calculation requires only one rendering pass with no additional memory requirement. This feature visibility based opacity specification is fast and compatible with all types of transfer function design. Furthermore, we introduce a two‐step volume exploration scheme, in which an automatic optimization is first performed to provide a clear illustration of the spatial relationship and then the user adjusts the visibilities directly to achieve the desired feature enhancement. The effectiveness of this scheme is demonstrated by experimental results on several volumetric datasets.  相似文献   

18.
This paper proposes an adaptive rendering technique for ray‐bundle tracing. Ray‐bundle tracing can be done by per‐pixel linked‐list construction on a GPU rasterization pipeline. This rasterization based approach offers significant benefits for the efficient generation of light maps (e.g., hardware acceleration, tessellation, and recycling of shaders used in real‐time graphics). However, it is inapplicable to large and complex scenes due to the limited capacity of the GPU memory because it requires a high‐resolution frame buffer and high‐capacity node buffer for the linked‐lists. In addition, memory overflow can potentially occur on the per‐pixel linked‐list since the memory usage of the lists is usually unknown before the rendering process. We introduce an adaptive tiling technique with memory usage prediction. Our method uses an appropriately tiled frame buffer, thus eliminating almost all of the overflow risks thanks to our adaptive tile subdivision scheme. Using this technique, we are able to render high‐quality light maps of large and complex scenes which cannot be computed using previous ray‐bundle based methods.  相似文献   

19.
We present a new approach aimed at understanding the structure of connections in edge‐bundling layouts. We combine the advantages of edge bundles with a bundle‐centric simplified visual representation of a graph's structure. For this, we first compute a hierarchical edge clustering of a given graph layout which groups similar edges together. Next, we render clusters at a user‐selected level of detail using a new image‐based technique that combines distance‐based splatting and shape skeletonization. The overall result displays a given graph as a small set of overlapping shaded edge bundles. Luminance, saturation, hue, and shading encode edge density, edge types, and edge similarity. Finally, we add brushing and a new type of semantic lens to help navigation where local structures overlap. We illustrate the proposed method on several real‐world graph datasets.  相似文献   

20.
We present an automatic image‐recoloring technique for enhancing color contrast for dichromats whose computational cost varies linearly with the number of input pixels. Our approach can be efficiently implemented on GPUs, and we show that for typical image sizes it is up to two orders of magnitude faster than the current state‐of‐the‐art technique. Unlike previous approaches, ours preserve temporal coherence and, therefore, is suitable for video recoloring. We demonstrate the effectiveness of our technique by integrating it into a visualization system and showing, for the first time, real‐time high‐quality recolored visualizations for dichromats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号