首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an interactive topology optimization application designed for hand-held devices running iOS or Android. The TopOpt app solves the 2D minimum compliance problem with interactive control of load and support positions as well as volume fraction. Thus, it is possible to change the problem settings on the fly and watch the design evolve to a new optimum in real time. The use of an interactive app makes it extremely simple to learn and understand the influence of load-directions, support conditions and volume fraction. The topology optimization kernel is written in C# and the graphical user interface is developed using the game engine Unity3D. The underlying code is inspired by the publicly available 88 and 99 line Matlab codes for topology optimization but does not utilize any low-level linear algebra routines such as BLAS or LAPACK. The TopOpt App can be downloaded on iOS devices from the Apple App Store, at Google Play for the Android platform, and a web-version can be run from www.topopt.dtu.dk.  相似文献   

2.
We briefly describe our game design and simulation environment and integrate full-body dynamic motion into interactive 3D computer games and multimedia entertainment.  相似文献   

3.
4.
Structural and Multidisciplinary Optimization - This paper proposes a method for performing both multi-material topology optimization and multi-joint topology optimization. The algorithm can...  相似文献   

5.
This paper presents a 100-line Python code for general 3D topology optimization. The code adopts the Abaqus Scripting Interface that provides convenient access to advanced finite element analysis (FEA). It is developed for the compliance minimization with a volume constraint using the Bi-directional Evolutionary Structural Optimization (BESO) method. The source code is composed of a main program controlling the iterative procedure and five independent functions realizing input model preparation, FEA, mesh-independent filter and BESO algorithm. The code reads the initial design from a model database (.cae file) that can be of arbitrary 3D geometries generated in Abaqus/CAE or converted from various widely used CAD modelling packages. This well-structured code can be conveniently extended to various other topology optimization problems. As examples of easy modifications to the code, extensions to multiple load cases and nonlinearities are presented. This code is useful for researchers in the topology optimization field and for practicing engineers seeking automated conceptual design tools. With further extensions, the code could solve sophisticated 3D conceptual design problems in structural engineering, mechanical engineering and architecture practice. The complete code is given in the appendix section and can also be downloaded from the website: www.rmit.edu.au/research/cism/.  相似文献   

6.
Structural and Multidisciplinary Optimization - As the frontier of modern-day engineering challenges pushes forward, the integration of multiple strategies to reduce manufacturing cost and increase...  相似文献   

7.
Geometric fusion for a hand-held 3D sensor   总被引:2,自引:0,他引:2  
Abstract. This article presents a geometric fusion algorithm developed for the reconstruction of 3D surface models from hand-held sensor data. Hand-held systems allow full 3D movement of the sensor to capture the shape of complex objects. Techniques previously developed for reconstruction from conventional 2.5D range image data cannot be applied to hand-held sensor data. A geometric fusion algorithm is introduced to integrate the measured 3D points from a hand-held sensor into a single continuous surface. The new geometric fusion algorithm is based on the normal-volume representation of a triangle, which enables incremental transformation of an arbitrary mesh into an implicit volumetric field function. This system is demonstrated for reconstruction of surface models from both hand-held sensor data and conventional 2.5D range images. Received: 30 August 1999 / Accepted: 21 January 2000  相似文献   

8.
A 3D model reconstruction workflow with hand-held cameras is developed. The exterior and interior orientation models combined with the state-of-the-art structure from motion and multi-view stereo techniques are applied to extract dense point cloud and reconstruct 3D model from digital images. An overview of the presented 3D model reconstruction methods is given. The whole procedure including tie point extraction, relative orientation, bundle block adjustment, dense point production and 3D model reconstruction is all reviewed in brief. Among them, we focus on bundle block adjustment procedure; the mathematical and technical details of bundle block adjustment are introduced and discussed. Finally, four scenes of images collected by hand-held cameras are tested in this paper. The preliminary results have shown that sub-pixel (<1 pixel) accuracy can be achieved with the proposed exterior–interior orientation models and satisfactory 3D models can be reconstructed using images collected by hand-held cameras. This work can be applied in indoor navigation, crime scene reconstruction, heritage reservation and other applications in geosciences.  相似文献   

9.
10.
3D stereo interactive medical visualization   总被引:1,自引:0,他引:1  
Our interactive, 3D stereo display helps guide clinicians during endovascular procedures, such as intraoperative needle insertion and stent placement relative to the target organs. We describe a new method of guiding endovascular procedures using interactive 3D stereo visualizations. We use as an example the transjugular intrahepatic portosystemic shunt (TIPS) procedure. Our goal is to increase the speed and safety of endovascular procedures by providing the interventionalist with 3D information as the operation proceeds. Our goal is to provide 3D image guidance of the TIPS procedure so that the interventionalist can readily adjust the needle position and trajectory to reach the target on the first pass. We propose a 3D stereo display of the interventionalist's needle and target vessels. We also add interactivity via head tracking so that the interventionalist gains a better 3D sense of the relationship between the target vessels and the needle during needle advancement.  相似文献   

11.
This study proposes a 3D CAD system available on smart devices, which are now a part of everyday life and which are widely applied in various domains, such as education and robot industry. If an engineer has a new idea while traveling or on the move, or in the case of collaboration between more than two engineers, this 3D CAD system allows modeling to be performed in a rapid and simple manner on a smart device. This 3D CAD system uses the common multi-touch gestures associated with smart devices to keep the modeling operations simple and easy for users. However, it is difficult to input the precise geometric information to generate 3D CAD models by such gestures. It is also impractical to provide a full set of modeling operations on a smart device due to hardware limitations. For this reason, the system excludes several complicated modeling operations. This work provides a scheme to regenerate a parametric 3D model on a PC-based CAD system via a macro-parametrics approach by transferring the 3D model created on a smart device in an editable form to a PC-based CAD system. If fine editing is needed, the user can perform additional work on a PC after reconstruction. Through the developed system, it is possible to produce a 3D editable model swiftly and simply in the smart device environment, allowing for reduced design time while also facilitating collaboration. This paper discusses the first-ever system design of a 3D CAD system on a smart device, the selection of the modeling operations, the assignment of gestures to these operations, and use of operation modes. This is followed by an introduction of the implementation methods, and finally a demonstration of case studies using a prototype system with examples.  相似文献   

12.
This paper presents a novel level set-based topology optimization implementation, which addresses two main problems of design-for-additive manufacturing (AM): the material anisotropy and the self-support manufacturability constraint. AM material anisotropy is widely recognized and taking it into account while performing structural topology optimization could more realistically evaluate the structural performance. Therefore, both build direction and in-plane raster directions are considered by the topology optimization algorithm, especially for the latter, which is calculated through deposition path planning. The self-support manufacturability constraint is addressed through a novel multi-level set modeling. The related optimization problem formulation and solution process are demonstrated in detail. It is proved by several numerical examples that the manufacturability constraints are always strictly satisfied. Marginally, the recently popular structural skeleton-based deposition paths are also employed to assist the structural topology optimization, and its characteristics are discussed.  相似文献   

13.
We develop a topology optimization approach to design two- and three-dimensional phononic (elastic) materials, focusing primarily on surface wave filters and waveguides. These utilize propagation modes that transmit elastic waves where the energy is contained near a free surface of a material. The design of surface wave devices is particularly attractive given recent advances in nano- and micromanufacturing processes, such as thin-film deposition, etching, and lithography, which make it possible to precisely place thin film materials on a substrate with submicron feature resolution. We apply our topology optimization approach to a series of three problems where the layout of two materials (silicon and aluminum) is sought to achieve a prescribed objective: (1) a grating to filter bulk waves of a prescribed frequency in two and three dimensions, (2) a surface wave device that uses a patterned thin film to filter waves of a single or range of frequencies, and (3) a fully three-dimensional structure to guide a wave generated by a harmonic input on a free surface to a specified output port on the surface. From the first to the third example, the resulting topologies increase in sophistication. The results demonstrate the power and promise of our computational framework to design sophisticated surface wave devices.  相似文献   

14.
We provide an overview of some of our input device developments, which we designed in response to the need for more advanced 3D interfaces. Some of our devices are more task-specific and others are more general, but all of them support six or more degrees of freedom (DOF) and work in three dimensions. In our work, we try to understand the essential requirements of individual tasks and task combinations to develop corresponding devices and interaction techniques. This is our way of developing input devices for the 3D domain that work better for certain application areas than 2D mouses, gloves, and wands.  相似文献   

15.
Structural and Multidisciplinary Optimization - This paper presents the study of a new penalty method for density-based topology optimization. The focus is on 3D-printable building structures with...  相似文献   

16.
数字化考古交互式三维场景复原研究   总被引:1,自引:0,他引:1  
考古领域引入地球物理探测技术和计算机信息技术是未来数字化考古的发展方向.介绍了VRML技术和Java技术,提出了根据金沙遗址的探测数据和考古文献资料建立计算机交互式古代三维祭祀场景的思路和实现的途径与方法.最后,利用VRML技术和Java技术实现了互动的虚拟三维祭祀场景.  相似文献   

17.
We describe a systematic approach for the robust optimal design of linear elastic structures subjected to unknown loading using minmax and topology optimization methods. Assuming only the loading region and norm, we distribute a given amount of material in the design domain to minimize the principal compliance, i.e. the maximum compliance that is produced by the worst-case loading scenario. We evaluate the principal compliance directly by satisfying the optimality conditions which take the form of a Steklov eigenvalue problem and thus we eliminate the need of an iterative nested optimization. To generate a well-posed topology optimization problem we use relaxation which requires homogenization theory. Examples are provided to demonstrate our algorithm.  相似文献   

18.
Adaptive topology optimization   总被引:7,自引:3,他引:4  
Topology optimization of continuum structures is often reduced to a material distribution problem. Up to now this optimization problem has been solved following a rigid scheme. A design space is parametrized by design patches, which are fixed during the optimization process and are identical to the finite element discretization. The structural layout is determined, whether or not there is material in the design patches. Since many design patches are necessary to describe approximately the structural layout, this procedure leads to a large number of optimization variables. Furthermore, due to a lack of clearness and smoothness, the results obtained can often only be used as a conceptual design idea.To overcome these shortcomings adaptive techniques, which decrease the number of optimization variables and generate smooth results, are introduced. First, the use of pure mesh refinement in topology optimization is discussed. Since this technique still leads to unsatisfactory results, a new method is proposed that adapts the effective design space of each design cycle to the present material distribution. Since the effective design space is approximated by cubic or Bézier splines, this procedure does not only decrease the number of design variables and lead to smooth results, but can be directly joined to conventional shape optimization. With examples for maximum stiffness problems of elastic structures the quality of the proposed techniques is demonstrated.  相似文献   

19.
Reliability-based topology optimization   总被引:3,自引:2,他引:1  
The objective of this work is to integrate reliability analysis into topology optimization problems. The new model, in which we introduce reliability constraints into a deterministic topology optimization formulation, is called Reliability-Based Topology Optimization (RBTO). Several applications show the importance of this integration. The application of the RBTO model gives a different topology relative to deterministic topology optimization. We also find that the RBTO model yields structures that are more reliable than those produced by deterministic topology optimization (for the same weight).  相似文献   

20.
Multidiscipline topology optimization   总被引:1,自引:0,他引:1  
Topology optimization is used for determining the best layout of structural components to achieve predetermined performance goals. The density method which uses material density of each finite element as the design variable, is employed. Unlike the most common approach which uses the optimality criteria methods, the topology design problem is formulated as a general optimization problem and is solved by the mathematical programming method. One of the major advantages of this approach is its generality; thus it can solve various problems, e.g. multi-objective and multi-constraint problems. In this study, the structural weight is chosen as the objective function and structural responses such as the compliances, displacements and the natural frequencies, are treated as the constraints. The MSC/NASTRAN finite element code is employed for response analyses. One example with four different optimization formulations was used to demonstrate this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号