首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to interpolate between images taken at different time and viewpoints directly in image space opens up new possiblities. The goal of our work is to create plausible in‐between images in real time without the need for an intermediate 3D reconstruction. This enables us to also interpolate between images recorded with uncalibrated and unsynchronized cameras. In our approach we use a novel discontiniuity preserving image deformation model to robustly estimate dense correspondences based on local homographies. Once correspondences have been computed we are able to render plausible in‐between images in real time while properly handling occlusions. We discuss the relation of our approach to human motion perception and other image interpolation techniques.  相似文献   

2.
We present a real‐time method for rendering a depth‐of‐field effect based on the per‐pixel layered splatting where source pixels are scattered on one of the three layers of a destination pixel. In addition, the missing information behind foreground objects is filled with an additional image of the areas occluded by nearer objects. The method creates high‐quality depth‐of‐field results even in the presence of partial occlusion, without major artifacts often present in the previous real‐time methods. The method can also be applied to simulating defocused highlights. The entire framework is accelerated by GPU, enabling real‐time post‐processing for both off‐line and interactive applications.  相似文献   

3.
This paper introduces a framebuffer level of detail algorithm for controlling the pixel workload in an interactive rendering application. Our basic strategy is to evaluate the shading in a low resolution buffer and, in a second rendering pass, resample this buffer at the desired screen resolution. The size of the lower resolution buffer provides a trade‐off between rendering time and the level of detail in the final shading. In order to reduce approximation error we use a feature‐preserving reconstruction technique that more faithfully approximates the shading near depth and normal discontinuities. We also demonstrate how intermediate components of the shading can be selectively resized to provide finer‐grained control over resource allocation. Finally, we introduce a simple control mechanism that continuously adjusts the amount of resizing necessary to maintain a target framerate. These techniques do not require any preprocessing, are straightforward to implement on modern GPUs, and are shown to provide significant performance gains for several pixel‐bound scenes.  相似文献   

4.
The ABSTRACT is to be in fully-justified italicized text, between two horizontal lines, in one-column format, below the author and affiliation information. Use the word “Abstract” as the title, in 9-point Times, boldface type, left-aligned to the text, initially capitalized. The abstract is to be in 9-point, single-spaced type. The abstract may be up to 3 inches (7.62 cm) long. Leave one blank line after the abstract, then add the subject categories according to the ACM Classification Index (see http://www.acm.org/class/1998/ ).  相似文献   

5.
We present a novel algorithm for the efficient extraction and visualization of high‐quality ridge and valley surfaces from numerical datasets. Despite their rapidly increasing popularity in visualization, these so‐called crease surfaces remain challenging to compute owing to their strongly nonlinear and non‐orientable nature, and their complex boundaries. In this context, existing meshing techniques require an extremely dense sampling that is computationally prohibitive. Our proposed solution intertwines sampling and meshing steps to yield an accurate approximation of the underlying surfaces while ensuring the geometric quality of the resulting mesh. Using the computation power of the GPU, we propose a fast, parallel method for sampling. Additionally, we present a new front propagation meshing strategy that leverages CPU multiprocessing. Results are shown for synthetic, medical and fluid dynamics datasets.  相似文献   

6.
In this paper we present a method for automatic interpolation between adjacent discrete levels of detail to achieve smooth LOD changes in image space. We achieve this by breaking the problem into two passes: We render the two LOD levels individually and combine them in a separate pass afterwards. The interpolation is formulated in a way that only one level has to be updated per frame and the other can be reused from the previous frame, thereby causing roughly the same render cost as with simple non interpolated discrete LOD rendering, only incurring the slight overhead of the final combination pass. Additionally we describe customized interpolation schemes using visibility textures. The method was designed with the ease of integration into existing engines in mind. It requires neither sorting nor blending of objects, nor does it introduce any constrains in the LOD used. The LODs can be coplanar, alpha masked, animated, impostors, and intersecting, while still interpolating smoothly.  相似文献   

7.
In this paper, we introduce a new representation – radiance transfer fields (RTF) – for rendering interreflections in dynamic scenes under low frequency illumination. The RTF describes the radiance transferred by an individual object to its surrounding space as a function of the incident radiance. An important property of RTF is its independence of the scene configuration, enabling interreflection computation in dynamic scenes. Secondly, RTFs naturally fit in with the rendering framework of precomputed shadow fields, incurring negligible cost to add interreflection effects. In addition, RTFs can be used to compute interreflections for both diffuse and glossy objects. We also show that RTF data can be highly compressed by clustered principal component analysis (CPCA), which not only reduces the memory cost but also accelerates rendering. Finally, we present some experimental results demonstrating our techniques.  相似文献   

8.
This paper describes a fast rendering algorithm for verification of spectacle lens design. Our method simulates refraction corrections of astigmatism as well as myopia or presbyopia. Refraction and defocus are the main issues in the simulation. For refraction, our proposed method uses per-vertex basis ray tracing which warps the environment map and produces a real-time refracted image which is subjectively as good as ray tracing. Conventional defocus simulation was previously done by distribution ray tracing and a real-time solution was impossible. We introduce the concept of a blur field, which we use to displace every vertex according to its position. The blurring information is precomputed as a set of field values distributed to voxels which are formed by evenly subdividing the perspective projected space. The field values can be determined by tracing a wavefront from each voxel through the lens and the eye, and by evaluating the spread of light at the retina considering the best human accommodation effort. The blur field is stored as texture data and referred to by the vertex shader that displaces each vertex. With an interactive frame rate, blending the multiple rendering results produces a blurred image comparable to distribution ray tracing output.  相似文献   

9.
Interactive computation of global illumination is a major challenge in current computer graphics research. Global illumination heavily affects the visual quality of generated images. It is therefore a key attribute for the perception of photo‐realistic images. Path tracing is able to simulate the physical behaviour of light using Monte Carlo techniques. However, the computational burden of this technique prohibits interactive rendering times on standard commodity hardware in high‐quality. Trying to solve the Monte Carlo integration with fewer samples results in characteristic noisy images. Global illumination filtering methods take advantage of the fact that the integral for neighbouring pixels may be very similar. Averaging samples of similar characteristics in screen‐space may approximate the correct integral, but may result in visible outliers. In this paper, we present a novel path tracing pipeline based on an edge‐aware filtering method for the indirect illumination which produces visually more pleasing results without noticeable outliers. The key idea is not to filter the noisy path traced images but to use it as a guidance to filter a second image composed from characteristic scene attributes that do not contain noise by default. We show that our approach better approximates the Monte Carlo integral compared to previous methods. Since the computation is carried out completely in screen‐space it is therefore applicable to fully dynamic scenes, arbitrary lighting and allows for high‐quality path tracing at interactive frame rates on commodity hardware.  相似文献   

10.
In this paper we present a new practical camera characterization technique to improve color accuracy in high dynamic range (HDR) imaging. Camera characterization refers to the process of mapping device‐dependent signals, such as digital camera RAW images, into a well‐defined color space. This is a well‐understood process for low dynamic range (LDR) imaging and is part of most digital cameras — usually mapping from the raw camera signal to the sRGB or Adobe RGB color space. This paper presents an efficient and accurate characterization method for high dynamic range imaging that extends previous methods originally designed for LDR imaging. We demonstrate that our characterization method is very accurate even in unknown illumination conditions, effectively turning a digital camera into a measurement device that measures physically accurate radiance values — both in terms of luminance and color — rivaling more expensive measurement instruments.  相似文献   

11.
We propose a novel system for designing and manufacturing surfaces that produce desired caustic images when illuminated by a light source. Our system is based on a nonnegative image decomposition using a set of possibly overlapping anisotropic Gaussian kernels. We utilize this decomposition to construct an array of continuous surface patches, each of which focuses light onto one of the Gaussian kernels, either through refraction or reflection. We show how to derive the shape of each continuous patch and arrange them by performing a discrete assignment of patches to kernels in the desired caustic. Our decomposition provides for high fidelity reconstruction of natural images using a small collection of patches. We demonstrate our approach on a wide variety of caustic images by manufacturing physical surfaces with a small number of patches.  相似文献   

12.
In this paper, we present a rapid prototyping framework for GPU‐based volume rendering. Therefore, we propose a dynamic shader pipeline based on the SuperShader concept and illustrate the design decisions. Also, important requirements for the development of our system are presented. In our approach, we break down the rendering shader into areas containing code for different computations, which are defined as freely combinable, modularized shader blocks. Hence, high‐level changes of the rendering configuration result in the implicit modification of the underlying shader pipeline. Furthermore, the prototyping system allows inserting custom shader code between shader blocks of the pipeline at run‐time. A suitable user interface is available within the prototyping environment to allow intuitive modification of the shader pipeline. Thus, appropriate solutions for visualization problems can be interactively developed. We demonstrate the usage and the usefulness of our framework with implementations of dynamic rendering effects for medical applications.  相似文献   

13.
We introduce a new technique called Implicit Brushes to render animated 3D scenes with stylized lines in realtime with temporal coherence. An Implicit Brush is defined at a given pixel by the convolution of a brush footprint along a feature skeleton; the skeleton itself is obtained by locating surface features in the pixel neighborhood. Features are identified via image‐space fitting techniques that not only extract their location, but also their profile, which permits to distinguish between sharp and smooth features. Profile parameters are then mapped to stylistic parameters such as brush orientation, size or opacity to give rise to a wide range of line‐based styles.  相似文献   

14.
Pixel‐based visualizations have become popular, because they are capable of displaying large amounts of data and at the same time provide many details. However, pixel‐based visualizations are only effective if the data set is not sparse and the data distribution not random. Single pixels – no matter if they are in an empty area or in the middle of a large area of differently colored pixels – are perceptually difficult to discern and may therefore easily be missed. Furthermore, trends and interesting passages may be camouflaged in the sea of details. In this paper we compare different approaches for visual boosting in pixel‐based visualizations. Several boosting techniques such as halos, background coloring, distortion, and hatching are discussed and assessed with respect to their effectiveness in boosting single pixels, trends, and interesting passages. Application examples from three different domains (document analysis, genome analysis, and geospatial analysis) show the general applicability of the techniques and the derived guidelines.  相似文献   

15.
The parallel vectors (PV) operator is a feature extraction approach for defining line‐type features such as creases (ridges and valleys) in scalar fields, as well as separation, attachment, and vortex core lines in vector fields. In this work, we extend PV feature extraction to higher‐order data represented by piecewise analytical functions defined over grid cells. The extraction uses PV in two distinct stages. First, seed points on the feature lines are placed by evaluating the inclusion form of the PV criterion with reduced affine arithmetic. Second, a feature flow field is derived from the higher‐order PV expression where the features can be extracted as streamlines starting at the seeds. Our approach allows for guaranteed bounds regarding accuracy with respect to existence, position, and topology of the features obtained. The method is suitable for parallel implementation and we present results obtained with our GPU‐based prototype. We apply our method to higher‐order data obtained from discontinuous Galerkin fluid simulations.  相似文献   

16.
Systems projecting a continuous n‐dimensional parameter space to a continuous m‐dimensional target space play an important role in science and engineering. If evaluating the system is expensive, however, an analysis is often limited to a small number of sample points. The main contribution of this paper is an interactive approach to enable a continuous analysis of a sampled parameter space with respect to multiple target values. We employ methods from statistical learning to predict results in real‐time at any user‐defined point and its neighborhood. In particular, we describe techniques to guide the user to potentially interesting parameter regions, and we visualize the inherent uncertainty of predictions in 2D scatterplots and parallel coordinates. An evaluation describes a real‐world scenario in the application context of car engine design and reports feedback of domain experts. The results indicate that our approach is suitable to accelerate a local sensitivity analysis of multiple target dimensions, and to determine a sufficient local sampling density for interesting parameter regions.  相似文献   

17.
Despite their high popularity, common high dynamic range (HDR) methods are still limited in their practical applicability: They assume that the input images are perfectly aligned, which is often violated in practise. Our paper does not only free the user from this unrealistic limitation, but even turns the missing alignment into an advantage: By exploiting the multiple exposures, we can create a super‐resolution image. The alignment step is performed by a modern energy‐based optic flow approach that takes into account the varying exposure conditions. Moreover, it produces dense displacement fields with subpixel precision. As a consequence, our approach can handle arbitrary complex motion patterns, caused by severe camera shake and moving objects. Additionally, it benefits from several advantages over existing strategies: (i) It is robust under outliers (noise, occlusions, saturation problems) and allows for sharp discontinuities in the displacement field. (ii) The alignment step neither requires camera calibration nor knowledge of the exposure times. (iii) It can be efficiently implemented on CPU and GPU architectures. After the alignment is performed, we use the obtained subpixel accurate displacement fields as input for an energy‐based, joint super‐resolution and HDR (SR‐HDR) approach. It introduces robust data terms and anisotropic smoothness terms in the SR‐HDR literature. Our experiments with challenging real world data demonstrate that these novelties are pivotal for the favourable performance of our approach.  相似文献   

18.
We describe a fast sampling algorithm for generating uniformly‐distributed point patterns with good blue noise characteristics. The method, based on constrained farthest point optimization, is provably optimal and may be easily parallelized, resulting in an algorithm whose performance/quality tradeoff is superior to other state‐of‐the‐art approaches.  相似文献   

19.
Subpixel rendering increases the apparent display resolution by taking into account the subpixel structure of a given display. In essence, each subpixel is addressed individually, allowing the underlying signal to be sampled more densely. Unfortunately, naïve subpixel sampling introduces colour aliasing, as each subpixel only displays a specific colour (usually R, G and B subpixels are used). As previous work has shown, chromatic aliasing can be reduced significantly by taking the sensitivity of the human visual system into account. In this work, we find optimal filters for subpixel rendering for a diverse set of 1D and 2D subpixel layout patterns. We demonstrate that these optimal filters can be approximated well with analytical functions. We incorporate our filters into GPU‐based multi‐sample anti‐aliasing to yield subpixel rendering at a very low cost (1–2 ms filtering time at HD resolution). We also show that texture filtering can be adapted to perform efficient subpixel rendering. Finally, we analyse the findings of a user study we performed, which underpins the increased visual fidelity that can be achieved for diverse display layouts, by using our optimal filters.  相似文献   

20.
The rendering of large data sets can result in cluttered displays and non‐interactive update rates, leading to time consuming analyses. A straightforward solution is to reduce the number of items, thereby producing an abstraction of the data set. For the visual analysis to remain accurate, the graphical representation of the abstraction must preserve the significant features present in the original data. This paper presents a screen space quality method, based on distance transforms, that measures the visual quality of a data abstraction. This screen space measure is shown to better capture significant visual structures in data, compared with data space measures. The presented method is implemented on the GPU, allowing interactive creation of high quality graphical representations of multivariate data sets containing tens of thousands of items.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号