首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
3D video billboard clouds reconstruct and represent a dynamic three-dimensional scene using displacement-mapped billboards. They consist of geometric proxy planes augmented with detailed displacement maps and combine the generality of geometry-based 3D video with the regularization properties of image-based 3D video. 3D video billboards are an image-based representation placed in the disparity space of the acquisition cameras and thus provide a regular sampling of the scene with a uniform error model. We propose a general geometry filtering framework which generates time-coherent models and removes reconstruction and quantization noise as well as calibration errors. This replaces the complex and time-consuming sub-pixel matching process in stereo reconstruction with a bilateral filter. Rendering is performed using a GPU-accelerated algorithm which generates consistent view-dependent geometry and textures for each individual frame. In addition, we present a semi-automatic approach for modeling dynamic three-dimensional scenes with a set of multiple 3D video billboards clouds.  相似文献   

2.
The support of advanced information technology (IT) to preservation, restoration and documentation of Cultural Heritage (CH) is becoming a very important goal for the research community. Michelangelo's David was one of the first applications of 3D scanning technology on a highly popular work of art. The subsequent restoration campaign, started in 2002 and concluded in 2004, was also a milestone for the adoption of modern scientific analysis procedures and IT tools in the framework of a restoration process. One of the focuses in this restoration was also methodological, i.e. to plan and adopt innovative ways to document the restoration process. In this paper, we present the results of an integration of different restoration data (2D and 3D datasets) which has been concluded recently. The recent evolution of HW and SW graphics technologies gave us the possibility to interactively visualize an extremely dense 3D model which incorporates the colour information provided by two professional photographic campaigns, made before and after the restoration. Moreover, we present the results concerning the mapping, in this case on the 2D media, of the reliefs produced by restorers to assess and document the status of the marble surface before the restoration took place. This result could lead to new and fascinating applications of computer graphics for preservation, restoration and documentation of CH.  相似文献   

3.
In this paper we address the question of how to quickly model glyph‐based Geographic Information System visualizations. Our solution is based on using shape grammars to set up the different aspects of a visualization, including the geometric content of the visualization, methods for resolving layout conflicts and interaction methods. Our approach significantly increases modelling efficiency over similarly flexible systems currently in use.  相似文献   

4.
Interactive computation of global illumination is a major challenge in current computer graphics research. Global illumination heavily affects the visual quality of generated images. It is therefore a key attribute for the perception of photo‐realistic images. Path tracing is able to simulate the physical behaviour of light using Monte Carlo techniques. However, the computational burden of this technique prohibits interactive rendering times on standard commodity hardware in high‐quality. Trying to solve the Monte Carlo integration with fewer samples results in characteristic noisy images. Global illumination filtering methods take advantage of the fact that the integral for neighbouring pixels may be very similar. Averaging samples of similar characteristics in screen‐space may approximate the correct integral, but may result in visible outliers. In this paper, we present a novel path tracing pipeline based on an edge‐aware filtering method for the indirect illumination which produces visually more pleasing results without noticeable outliers. The key idea is not to filter the noisy path traced images but to use it as a guidance to filter a second image composed from characteristic scene attributes that do not contain noise by default. We show that our approach better approximates the Monte Carlo integral compared to previous methods. Since the computation is carried out completely in screen‐space it is therefore applicable to fully dynamic scenes, arbitrary lighting and allows for high‐quality path tracing at interactive frame rates on commodity hardware.  相似文献   

5.
Rendering with accurate camera models greatly increases realism and improves the match of synthetic imagery to real‐life footage. Photographic lenses can be simulated by ray tracing, but the performance depends on the complexity of the lens system, and some operations required for modern algorithms, such as deterministic connections, can be difficult to achieve. We generalise the approach of polynomial optics, i.e. expressing the light field transformation from the sensor to the outer pupil using a polynomial, to work with extreme wide angle (fisheye) lenses and aspherical elements. We also show how sparse polynomials can be constructed from the large space of high‐degree terms (we tested up to degree 15). We achieve this using a variant of orthogonal matching pursuit instead of a Taylor series when computing the polynomials. We show two applications: photorealistic rendering using Monte Carlo methods, where we introduce a new aperture sampling technique that is suitable for light tracing, and an interactive preview method suitable for rendering with deep images.  相似文献   

6.
We present a method to generate snow covers on complex scene geometries. Both volumetric snow shapes and photorealistic texturing are computed. We formulate snow accumulation as a diffusive distribution process on a ground scene. Our theoretical framework is motivated by models for granular material deposition. With the framework we can capture the most relevant features of natural snow cover geometries in a concise local computation scheme. Snow bridges and overhangs are also included. Snow surface texture coordinates are computed to create realistic ground–snow interfaces. Several example scenes and a supplementary snow cover growth animation demonstrate the method's efficiency.  相似文献   

7.
We present an unbiased method for generating caustic lighting using importance sampled Path Tracing with Caustic Forecasting. Our technique is part of a straightforward rendering scheme which extends the Illumination by Weak Singularities method to allow for fully unbiased global illumination with rapid convergence. A photon shooting preprocess, similar to that used in Photon Mapping, generates photons that interact with specular geometry. These photons are then clustered, effectively dividing the scene into regions which will contribute similar amounts of caustic lighting to the image. Finally, the photons are stored into spatial data structures associated with each cluster, and the clusters themselves are organized into a spatial data structure for fast searching. During rendering we use clusters to decide the caustic energy importance of a region, and use the local photons to aid in importance sampling, effectively reducing the number of samples required to capture caustic lighting.  相似文献   

8.
We present a real‐time rendering algorithm for inhomogeneous, single scattering media, where all‐frequency shading effects such as glows, light shafts, and volumetric shadows can all be captured. The algorithm first computes source radiance at a small number of sample points in the medium, then interpolates these values at other points in the volume using a gradient‐based scheme that is efficiently applied by sample splatting. The sample points are dynamically determined based on a recursive sample splitting procedure that adapts the number and locations of sample points for accurate and efficient reproduction of shading variations in the medium. The entire pipeline can be easily implemented on the GPU to achieve real‐time performance for dynamic lighting and scenes. Rendering results of our method are shown to be comparable to those from ray tracing.  相似文献   

9.
Performance has a spontaneity and “aliveness” that can be difficult to capture in more methodical animation processes such as keyframing. Access to performance animation has traditionally been limited to either low degree of freedom characters or required expensive hardware. We present a performance-based animation system for humanoid characters that requires no special hardware, relying only on mouse and keyboard input. We deal with the problem of controlling such a high degree of freedom model with low degree of freedom input through the use of correlation maps which employ 2D mouse input to modify a set of expressively relevant character parameters. Control can be continuously varied by rapidly switching between these maps. We present flexible techniques for varying and combining these maps and a simple process for defining them. The tool is highly configurable, presenting suitable defaults for novices and supporting a high degree of customization and control for experts. Animation can be recorded on a single pass, or multiple layers can be used to increase detail. Results from a user study indicate that novices are able to produce reasonable animations within their first hour of using the system. We also show more complicated results for walking and a standing character that gestures and dances.  相似文献   

10.
Digital fabrication devices exploit basic technologies in order to create tangible reproductions of 3D digital models. Although current 3D printing pipelines still suffer from several restrictions, accuracy in reproduction has reached an excellent level. The manufacturing industry has been the main domain of 3D printing applications over the last decade. Digital fabrication techniques have also been demonstrated to be effective in many other contexts, including the consumer domain. The Cultural Heritage is one of the new application contexts and is an ideal domain to test the flexibility and quality of this new technology. This survey overviews the various fabrication technologies, discussing their strengths, limitations and costs. Various successful uses of 3D printing in the Cultural Heritage are analysed, which should also be useful for other application contexts. We review works that have attempted to extend fabrication technologies in order to deal with the specific issues in the use of digital fabrication in the Cultural Heritage. Finally, we also propose areas for future research.  相似文献   

11.
Interactive rendering with dynamic natural lighting and changing view is a long‐standing goal in computer graphics. Recently, precomputation‐based methods for all‐frequency relighting have made substantial progress in this direction. Many of the most successful algorithms are based on a factorization of the BRDF into incident and outgoing directions, enabling each term to be precomputed independent of viewing direction, and re‐combined at run‐time. However, there has so far been no theoretical understanding of the accuracy of this factorization, nor the number of terms needed. In this paper, we conduct a theoretical and empirical analysis of the BRDF in‐out factorization. For Phong BRDFs, we obtain analytic results, showing that the number of terms needed grows linearly with the Phong exponent, while the factors correspond closely to spherical harmonic basis functions. More generally, the number of terms is quadratic in the frequency content of the BRDF along the reflected or half‐angle direction. This analysis gives clear practical guidance on the number of factors needed for a given material. Different objects in a scene can each be represented with the correct number of terms needed for that particular BRDF, enabling both accuracy and interactivity.  相似文献   

12.
In this paper, we introduce a new representation – radiance transfer fields (RTF) – for rendering interreflections in dynamic scenes under low frequency illumination. The RTF describes the radiance transferred by an individual object to its surrounding space as a function of the incident radiance. An important property of RTF is its independence of the scene configuration, enabling interreflection computation in dynamic scenes. Secondly, RTFs naturally fit in with the rendering framework of precomputed shadow fields, incurring negligible cost to add interreflection effects. In addition, RTFs can be used to compute interreflections for both diffuse and glossy objects. We also show that RTF data can be highly compressed by clustered principal component analysis (CPCA), which not only reduces the memory cost but also accelerates rendering. Finally, we present some experimental results demonstrating our techniques.  相似文献   

13.
In this paper we introduce the constrained tetrahedralization as a new acceleration structure for ray tracing. A constrained tetrahedralization of a scene is a tetrahedralization that respects the faces of the scene geometry. The closest intersection of a ray with a scene is found by traversing this tetrahedralization along the ray, one tetrahedron at a time. We show that constrained tetrahedralizations are a viable alternative to current acceleration structures, and that they have a number of unique properties that set them apart from other acceleration structures: constrained tetrahedralizations are not hierarchical yet adaptive; the complexity of traversing them is a function of local geometric complexity rather than global geometric complexity; constrained tetrahedralizations support deforming geometry without any effort; and they have the potential to unify several data structures currently used in global illumination.  相似文献   

14.
Rendering using physically based methods requires substantial computational resources. Most methods that are physically based use straightforward techniques that may excessively compute certain types of light transport, while ignoring more important ones. Importance sampling is an effective and commonly used technique to reduce variance in such methods. Most current approaches for physically based rendering based on Monte Carlo methods sample the BRDF and cosine term, but are unable to sample the indirect illumination as this is the term that is being computed. Knowledge of the incoming illumination can be especially useful in the case of hard to find light paths, such as caustics or scenes which rely primarily on indirect illumination. To facilitate the determination of such paths, we propose a caching scheme which stores important directions, and is analytically sampled to calculate important paths. Results show an improvement over BRDF sampling and similar illumination importance sampling.  相似文献   

15.
We present an optimized pruning algorithm that allows for considerable geometry reduction in large botanical scenes while maintaining high and coherent rendering quality. We improve upon previous techniques by applying model‐specific geometry reduction functions and optimized scaling functions. For this we introduce the use of Precision and Recall (PR) as a measure of quality to rendering and show how PR‐scores can be used to predict better scaling values. We conducted a user‐study letting subjects adjust the scaling value, which shows that the predicted scaling matches the preferred ones. Finally, we extend the originally purely stochastic geometry prioritization for pruning to account for view‐optimized geometry selection, which allows to take global scene information, such as occlusion, into consideration. We demonstrate our method for the rendering of scenes with thousands of complex tree models in real‐time.  相似文献   

16.
Rendering animations of scenes with deformable objects, camera motion, and complex illumination, including indirect lighting and arbitrary shading, is a long‐standing challenge. Prior work has shown that complex lighting can be accurately approximated by a large collection of point lights. In this formulation, rendering of animation sequences becomes the problem of efficiently shading many surface samples from many lights across several frames. This paper presents a tensor formulation of the animated many‐light problem, where each element of the tensor expresses the contribution of one light to one pixel in one frame. We sparsely sample rows and columns of the tensor, and introduce a clustering algorithm to select a small number of representative lights to efficiently approximate the animation. Our algorithm achieves efficiency by reusing representatives across frames, while minimizing temporal flicker. We demonstrate our algorithm in a variety of scenes that include deformable objects, complex illumination and arbitrary shading and show that a surprisingly small number of representative lights is sufficient for high quality rendering. We believe out algorithm will find practical use in applications that require fast previews of complex animation.  相似文献   

17.
Image‐based rendering (IBR) techniques allow users to create interactive 3D visualizations of scenes by taking a few snapshots. However, despite substantial progress in the field, the main barrier to better quality and more efficient IBR visualizations are several types of common, visually objectionable artifacts. These occur when scene geometry is approximate or viewpoints differ from the original shots, leading to parallax distortions, blurring, ghosting and popping errors that detract from the appearance of the scene. We argue that a better understanding of the causes and perceptual impact of these artifacts is the key to improving IBR methods. In this study we present a series of psychophysical experiments in which we systematically map out the perception of artifacts in IBR visualizations of façades as a function of the most common causes. We separate artifacts into different classes and measure how they impact visual appearance as a function of the number of images available, the geometry of the scene and the viewpoint. The results reveal a number of counter‐intuitive effects in the perception of artifacts. We summarize our results in terms of practical guidelines for improving existing and future IBR techniques.  相似文献   

18.
Variable bit rate compression can achieve better quality and compression rates than fixed bit rate methods. None the less, GPU texturing uses lossy fixed bit rate methods like DXT to allow random access and on‐the‐fly decompression during rendering. Changes in games and GPUs since DXT was developed make its compression artifacts less acceptable, and texture bandwidth less of an issue, but texture size is a serious and growing problem. Games use a large total volume of texture data, but have a much smaller active set. We present a new paradigm that separates GPU decompression from rendering. Rendering is from uncompressed data, avoiding the need for random access decompression. We demonstrate this paradigm with a new variable bit rate lossy texture compression algorithm that is well suited to the GPU, including a new GPU‐friendly formulation of range decoding, and a new texture compression scheme averaging 12.4:1 lossy compression ratio on 471 real game textures with a quality level similar to traditional DXT compression. The total game texture set are stored in the GPU in compressed form, and decompressed for use in a fraction of a second per scene.  相似文献   

19.
Recent progress in modelling, animation and rendering means that rich, high fidelity virtual worlds are found in many interactive graphics applications. However, the viewer's experience of a 3D world is dependent on the nature of the virtual cinematography, in particular, the camera position, orientation and motion in relation to the elements of the scene and the action. Camera control encompasses viewpoint computation, motion planning and editing. We present a range of computer graphics applications and draw on insights from cinematographic practice in identifying their different requirements with regard to camera control. The nature of the camera control problem varies depending on these requirements, which range from augmented manual control (semi‐automatic) in interactive applications, to fully automated approaches. We review the full range of solution techniques from constraint‐based to optimization‐based approaches, and conclude with an examination of occlusion management and expressiveness in the context of declarative approaches to camera control.  相似文献   

20.
Virtual cutting of deformable bodies has been an important and active research topic in physically based modelling and simulation for more than a decade. A particular challenge in virtual cutting is the robust and efficient incorporation of cuts into an accurate computational model that is used for the simulation of the deformable body. This report presents a coherent summary of the state of the art in virtual cutting of deformable bodies, focusing on the distinct geometrical and topological representations of the deformable body, as well as the specific numerical discretizations of the governing equations of motion. In particular, we discuss virtual cutting based on tetrahedral, hexahedral and polyhedral meshes, in combination with standard, polyhedral, composite and extended finite element discretizations. A separate section is devoted to meshfree methods. Furthermore, we discuss cutting‐related research problems such as collision detection and haptic rendering in the context of interactive cutting scenarios. The report is complemented with an application study to assess the performance of virtual cutting simulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号