首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A properly designed cell structure placed between the solar absorber and outer cover glass can substantially reduce natural convection and infrared reradiation heat losses. Glass has merit for such a cellular structure or honeycomb because it is an inexpensive, abundant and stable material with low thermal conductivity and outstanding optical characteristics. To optimize the design of a honeycomb structure, i.e. to minimize the cost of the solar energy collected Z, requires the determination of the honeycomb solar transmission as a function of incidence angles of the sun, infrared effective emittance, cell Nusselt number, and cell wall conductance as well as an estimate of appropriate costs. For an array of circular tubes, the design parameters are wall thickness b, cell diameter di, and cell length L. It is difficult to make b less than about 0.2 mm. Typically, di must be no larger than 1.6 cm. Increasing decreases reradiation and conduction losses, but also decreases solar energy transmission. For di = 9.53 mm and b = 0.198 mm, optimum values ranged from 3 to 12 for collector temperatures (above ambient air temperature) between 22°C and 100°C. Since the Z vs curves have fairly broad minimums, values less than 9 can be used with less than a 3 per cent penalty in cost at the higher temperatures.A comparison of collector effiency characteristics indicated that cylindrical glass honeycomb collectors with nonselective-black absorbers were markedly superior to single-glazed selective-black and double-glazed nonselective-black collectors, especially at higher collector temperatures. Cost effectiveness studies also indicated honeycomb collector superiority at temperature differences between the working fluid and ambient air greater than about 35°C.  相似文献   

2.
Investigations elucidate how a glass cover with antireflection surfaces can improve the efficiency of a solar collector and the thermal performance of solar heating systems. The transmittances for two glass covers for a flat-plate solar collector were measured for different incidence angles. The two glasses are identical, except for the fact that one of them is equipped with antireflection surfaces by the company SunArc A/S. The transmittance was increased by 5–9%-points due to the antireflection surfaces. The increase depends on the incidence angle. The efficiency at incidence angles of 0° and the incidence angle modifier were measured for a flat-plate solar collector with the two cover plates. The collector efficiency was increased by 4–6%-points due to the antireflection surfaces, depending on the incidence angle. The thermal advantage with using a glass cover with antireflection surfaces was determined for different solar heating systems. Three systems were investigated: solar domestic hot water systems, solar heating systems for combined space heating demand and domestic hot water supply, and large solar heating plants. The yearly thermal performance of the systems was calculated by detailed simulation models with collectors with a normal glass cover and with a glass cover with antireflection surfaces. The calculations were carried out for different solar fractions and temperature levels of the solar heating systems. These parameters influence greatly the thermal performance associated with the antireflection surfaces.  相似文献   

3.
Optical transmittance and reflectance of window materials can be measured accurately at normal incidence using standard equipment. Sunlight often strikes at angles for which the transmittance and reflectance are significantly different from their values at normal incidence. A reliable procedure for extrapolating from normal properties to oblique properties is thus needed for accurate annual energy performance calculations and product comparisons. The structural models for the materials are greatly constrained by the limited amount of data that is usually available. For monolithic materials such as uncoated glass or plastic substrates it is possible to solve directly for the optical indices and then apply Fresnel’s equation to obtain the oblique properties. For coated glass, the situation is more complex, but a numerical solution is often possible. First, detailed optical models were constructed and accurate angle-dependent data were generated for a wide selection of coated glazing materials. Then, a set of very simple thin-film models were chosen that would converge given a limited amount of data. At 60° incidence, the monolithic model was often accurate to within 2% but frequently deviated farther up to 8%. The single-layer thin-film model fared little better. Highly constrained multilayer models often deviated less than 1% although convergence became increasingly specific to similar coating types.  相似文献   

4.
The transient thermal performance of a chemically deposited thin film on a glass substrate is presented. Differential energy balances for the glass are set up assuming a one-dimensional transient state for normal incidence of the air mass to solar radiation. Using the reported properties of a SnS-CuxS thin film as a specific example, the net energy flow through a glass and the specific film were calculated for a time period. The effect of absorption in the film is specifically considered. The theoretical time histories of the surface temperatures of the glass plus solar control coating and the clear glass are plotted for an exterior temperature range of 0–50°C. The redistribution to the interior and exterior of the absorbed component of the solar radiation as well as the shading coefficient in time are evaluated for a constant convective heat transfer coefficient for ambient temperatures of 30 and 20°C. Also, the time constant of the system is given.  相似文献   

5.
A method for careful outdoor characterization of the angular dependent solar transmittance of solar glazing is developed and used for investigating the performance of structured and antireflection treated glass. Two identical collectors are series connected in order to get an identical flow. The reference collector is always covered with a thin Teflon foil and the test collector is furnished with the investigated covers. The method is carried out in six steps: (1) The collectors are long term tested in order to get the collector parameters, especially the U-values. (2) The performances of the collector at a temperature close to ambient are monitored during a clear day. (3) The effect of heat losses is eliminated from the knowledge of the U-values, and the optical efficiencies of the collectors are derived. (4) The ratio between optical efficiency of the test — and the reference collector is calculated. (5) Both collectors are tested with a Teflon film, with well-known optical properties, as a cover and the relative optical efficiency is derived. (6) From the relative transmittance between the investigated glazings and Teflon, the absolute value of the angular dependent transmittance is derived. The results show good agreement with conventional optical characterization. The commercial antireflection treatment increases the solar transmittance by 4% and the annual output by 9%. The structured glass shows similar angular performance as a flat glass if the structure is faced outwards, but shows a lower transmittance for incidence angles exceeding 40° if the structure is faced inwards. This means that the annual performance is decreased by 4% by facing the structure inwards instead of outwards.  相似文献   

6.
Sol–gel nano titanium dioxide (TiO2) thin film can be activated by the ultraviolet (UV) radiation available in sunlight to perform solar photocatalysis. The useful spectral range can be extended from UV to visible light by implantation of metal ion into the TiO2 lattice. As a result, the solar visible light can be utilized more efficiently to enhance the solar photocatalysis. In this study, visible-light-assisted photocatalytic glass reactors were built by parallel borosilicate glass plates coated on the upper surfaces with sol–gel TiO2 thin films implanted with chromium (Cr) ion. The properties of the Cr/TiO2 thin films were fully characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermal gravity (TG) analysis, scanning-electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. In the performance tests, a metal halide lamp was used as an external light source to resemble the solar visible spectral radiation. The performance of a Cr/TiO2 photoreactor was measured in terms of its photocatalytic degradation of gaseous formaldehyde in a single pass of contaminated air flowing through the photoreactor. The experimental results demonstrated the promise of using light-transmitting glass substrate to allow transmission and distribution of light from an external source to achieve solar photocatalysis. In the design of a parallel-plate photoreactor, it is important to properly control the Cr ion loading so that each Cr/TiO2-coated glass plate absorbs a portion of the incident light for its photocatalytic activation and allows light transmission available for the remaining coated plates.  相似文献   

7.
An experimental study is carried out to investigate the performance of a solar Rankine system using supercritical CO2 as a working fluid. The testing machine of the solar Rankine system consists of an evacuated solar collector, a pressure relief valve, heat exchangers and CO2 feed pump, etc. The solar energy powered system can provide electricity output as well as heat supply/refrigeration, etc. The system performance is evaluated based on daily, monthly and yearly experiment data. The results obtained show that heat collection efficiency for the CO2-based solar collector is measured at 65.0–70.0%. The power generation efficiency is found at 8.78–9.45%, which is higher than the value 8.20% of a solar cell. The result presents a potential future for the solar powered CO2 Rankine system to be used as distributed energy supply system for buildings or others.  相似文献   

8.
Absorption of solar radiation in the glass cover(s) of a flat plate solar collector increases the temperature of cover(s) and hence changes the values of convective and radiative heat transfer coefficients. The governing equations for the case of single as well as double glazed collector have been solved for inner and outer surface temperatures of glass cover(s) with/without including the effect of absorption of solar radiation in the glass cover(s), with appropriate boundary conditions. The effects of absorption of solar radiation on inner and outer surface temperatures and consequently on convective and radiative heat transfer coefficients have been studied over a wide range of the independent variables. The values of glass cover temperatures obtained from numerical solutions of heat balance equations with and without including the effect of absorption of solar radiation in the glass cover(s) are compared. For a single glazed collector the increase in glass cover temperature due to absorption of solar radiation could be as high as 6°. The increase in temperatures of first and second glass covers of a double glazed collector could be as high as 14° and 11°, respectively. The effect on the convective heat transfer coefficient between the absorber plate and the first glass cover is substantial. The difference in the values of the convective heat transfer coefficients between the absorber plate and the first glass cover (hcp1) of a double glazed collector for the two cases: (i) including the effect of absorption and (ii) neglecting the effect of absorption in glass cover, could be as high as 49%. Correlations for computing the temperatures of inner and outer surfaces of the glass cover(s) of single and double glazed flat plate collectors are developed. The relations developed enable incorporation of the effect of absorption of solar radiation in glass cover(s) in the relations for inner and outer surface temperatures in a simple manner. By making use of the relations developed for inner and outer surface temperatures of glass cover(s) the convective and radiative heat transfer coefficients can be calculated so close to those obtained by making use of surface temperatures of glass cover(s) obtained by numerical solutions of heat balance equations that numerical solutions of heat balance equations are not required.  相似文献   

9.
The transmittance of unpolarized light through a solar collector cover made of cylindrical glass tubes in a coplanar parallel close-packed array is dependent on the orientation of the cylindrical axes of the tubes in the plane of the cover. A maximum transmittance occurs when the axes are perpendicular to the plane of the angle of incidence, and a minimum transmittance occurs when the axes are parallel to the plane.At all orientations and at all angles of incidence the tubular cover has a markedly greater transmittance than does a cover formed from two parallel sheets of window glass.  相似文献   

10.
太阳能全玻璃真空集热管用玻璃   总被引:1,自引:1,他引:1  
沈长治 《太阳能学报》1996,17(3):201-208
根据全玻璃真空集热管对玻璃的要求,讨论了各种玻璃的物理、化学和工艺性能。符合ASTME-438、氧化铁一低于0.05%的硼硅玻璃3.3,是当前唯一可以大量生产并满足全玻璃真空集热管要求的适用玻璃。  相似文献   

11.
Parabolic trough solar collector usually consists of a parabolic solar energy concentrator, which reflects solar energy into an absorber. The absorber is a tube, painted with solar radiation absorbing material, located at the focal length of the concentrator, usually covered with a totally or partially vacuumed glass tube to minimize the heat losses. Typically, the concentration ratio ranges from 30 to 80, depending on the radius of the parabolic solar energy concentrator. The working fluid can reach a temperature up to 400°C, depending on the concentration ratio, solar intensity, working fluid flow rate and other parameters. Hence, such collectors are an ideal device for power generation and/or water desalination applications. However, as the length of the collector increases and/or the fluid flow rate decreases, the rate of heat losses increases. The length of the collector may reach a point that heat gain becomes equal to the heat losses; therefore, additional length will be passive. The current work introduces an analysis for the mentioned collector for single and double glass tubes. The main objectives of this work are to understand the thermal performance of the collector and identify the heat losses from the collector. The working fluid, tube and glass temperature's variation along the collector is calculated, and variations of the heat losses along the heated tube are estimated. It should be mentioned that the working fluid may experience a phase change as it flows through the tube. Hence, the heat transfer correlation for each phase is different and depends on the void fraction and flow characteristics. However, as a first approximation, the effect of phase change is neglected. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A rigorous approach for the radiative heat transfer analysis in solar collector glazing is developed. The model allows a more accurate prediction of thermal performance of a solar collector system. The glass material is analysed as a non-gray plane-parallel medium subjected to solar and thermal irradiations in the one-dimensional case using the Radiation Element Method by Ray Emission Model (REM by REM).This method is used to analyse the combined non-gray convective, conductive and radiative heat transfer in glass medium. The boundary surfaces of the glass are specular. The spectral dependence of the relevant radiation properties of glass (i.e. specular reflectivity, refraction angle and absorption coefficient) are taken into consideration. Both collimated and diffuse incident irradiation are applied at the boundary surfaces using the spectral solar model proposed by Bird and Riordan. The optical constants of a commercial ordinary clear glass material have been used. These optical constants (100 values) of real and imaginary parts of the complex refractive index of the glass material cover the range of interest for calculating the solar and thermal radiative heat transfer through the solar collector glass cover. The model allows the calculation of the steady-state heat flux and temperature distribution within the glass layer. The effect of both conduction and radiation in the heat transfer process is examined. It has been shown that the real and imaginary parts of the complex refractive index have a substantial effect on the layer temperature distribution. The computational time for predicting the combined heat transfer in such a system is very long for the non-gray case with 100 values of n and k. Therefore, a simplified non-gray model with 10 values of n and k and two semi-gray models have been proposed for rapid computations. A comparison of the proposed models with the reference non-gray case is presented. The result shows that 10 bandwidths could be used for rapid computation with a very high level of accuracy.  相似文献   

13.
A detailed comparative assessment is reported on the thermal performance of integrated collector‐storage (ICS) solar water heaters with various strategies for reducing top heat losses. The objective of this investigation is to assess and compare heat loss reduction strategies. The shape of ICS solar water heater considered in present investigation is rectangular. The thermal performance of the solar water heater is evaluated and analyzed for the following cases: (1) single glass cover without night insulation; (2) single glass cover with night insulation; (3) double glass cover without night insulation; (4) transparent insulation with single glass cover; and (5) insulating baffle plate with single glass cover. Energy balances are developed for each case and solved using a finite difference technique. The numerical assessment of the system performance is performed for a typical July day in Toronto. Each strategy is observed to be beneficial, reducing top heat losses, and improving system performance. The greatest performance enhancements are observed for the water heater with a single glass cover and night insulation and for the system with a double glass cover and without night insulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Theoretical data are presented for prediction of solar collector efficiencies as the cover plates are varied by coating, de-reflecting, changing iron content, or evacuating. Tin oxide as a radiation shield appears to offer some improvement for a nonselective black with two cover plates but no improvement with a selective black with one cover plate. Low-iron and dereflected soda lime glass offer considerable improvement over regular soda lime glass over the whole range of operating temperatures. An evacuated single cover plate with a selective black performs at 50 per cent efficiency at a collector plate temperature of 430°F. An analysis is presented that shows the effect of support studs in an evacuated unit. The data show that support studs having a cross-sectional area equal to 5 per cent of the collector area will greatly lower the efficiency of the unit.Experimental data are presented for no-load (no flowing water) conditions where collector plates fabricated with either tin-oxide coated glass and low iron glass are compared to regular glass for a non-selective surface. The collector plates with the tin-oxide coated glass and low iron glass attain higher equilibrium temperatures.  相似文献   

15.
Achieving high temperature thermal outputs from concentrating photovoltaic/thermal (PV/T) systems presents a challenge in that the performance of the PV cells declines with increasing temperature. Spectral beam splitting is an attractive approach to address this conflict by thermally decoupling the PV and thermal receivers, allowing the PV cells to operate at low temperature and the thermal receiver to operate at high temperature. In this study, SiNx/SiO2 multilayer thin film filters were designed and fabricated to act as beam splitting devices in a 10 sun, linear Fresnel mirror-based, concentrating PV/T solar collector. In this collector, reflected light is directed to a silicon PV cell whilst the transmitted light is directed to a thermal receiver. Plasma-enhanced chemical vapor deposition (PECVD) was used to fabricate the filters which were designed to obtain maximum hybrid output. The resulting devices have high reflectance (greater than 95%) for light between 713 and 1067 nm and high transmittance (greater than 90%) for sunlight outside that reflection window. The concentration of process gases in the PECVD reactor was varied in order to reduce undesired absorption at short wavelengths –lower than 650 nm– by the SiNx layers. Indoor testing was carried out for the filters in a system which consists of a Si PV cell, a thermal sensor, and a solid-state plasma light source (6500 K black body spectrum). This study tested filter performance for various angles of incidence (AOI) between 20 and 45°. The experimental results indicate that the PV cells, illuminated with the reflected light from the filters, operate on average at 9.2% absolute higher efficiency than the same cells without the filter. Furthermore, for the best filter, in terms of relative percentage, the measured hybrid output (weighted by a worth factor of electrical vs. thermal energy) is ∼9% higher than the electrical output of a PV cell stand-alone system exposed to the same light source. This paper represents the first study of a hybrid PV/T solar collector using SiNx/SiO2 thin film filters and demonstrates the feasibility of such systems. This study also indicates that this type of system can utilize 85.6% of the incoming solar spectrum based on the measured optical properties of the filters.  相似文献   

16.
Thin films of silicon oxide and silicon titanium mixed oxides are deposited on solar collector glazing in a sol–gel dip-coating process based on alcoxide precursors. Spectrophotometry is used to characterize the relation of film thickness and withdrawal speed for the precursor solutions, and to determine the refractive index of individual layers of the mixed oxides. The inferred dispersion relations n(λ) are compared to the predictions of effective medium theories. Based on the knowledge of the optical properties of individual layers, multilayer interference stacks are designed. Multilayered samples of superior quality are deposited by sol–gel dip-coating in a particle-free environment. The final optical performance of the multilayer stacks are characterized in terms of the visible reflectance RVIS, CIE color coordinates, and the solar transmission Tsol. Values of up to 2.4 have been attained for the energy efficiency of the colored reflection M=RVIS/(100%-Tsol). The produced coatings combine a bright colored reflection with an acceptable solar transmittance, and are thus well suited for the application in colored glazed thermal solar collectors. This novel type of colored glazing opens up new perspectives for the architectural integration of thermal solar collectors, e.g. as solar active glass facades.  相似文献   

17.
We present a cross-sectional transmission electron microscopy study of a set of hydrogenated nano-crystalline silicon n-i-p solar cells deposited by hot-wire chemical vapour deposition on Corning glass substrates coated with ZnO-covered Ag layers with various surface roughnesses. Strip-like structural defects (voids and low-density areas) are observed in the silicon layers originating from micro-valleys of Ag grains. A correlation between the opening angles of the textured surface and the appearance of these strips was found. We propose that in order to grow high-quality hydrogenated nano-crystalline silicon absorber layers for solar cell applications, the morphology of the Ag surface is a critical property, and the micro-valleys at the ZnO surface with an opening angle smaller than around 110° should be avoided.  相似文献   

18.
An electrochromic prototype with WO3 and NiO as electrochromic layers was analysed in an absolute spectrophotometer. The electrochromic glazing was measured in combination with a clear float glass and a low-e glass in order to simulate a ‘real’ window. Similar measurements were performed on a commercial electrochromic product, i.e., a Gentex Night Vision Safety™ (NVS®) mirror from Gentex Corporation, and the results were compared. The spectral transmittance was measured, in bleached and coloured state, over the solar wavelength range at the angles of incidence, φ=0, 40, 60 and 70°. The direct solar transmittance, Tsol, the visual transmittance, Tvis, and the angular dependence for these parameters were calculated.  相似文献   

19.
Highly insulating aerogel glazing for solar energy usage   总被引:1,自引:0,他引:1  
Granular silica aerogels have been integrated into highly-insulating translucent glazing. This work was performed within the large R&D project ISOTEG pursued by the ZAE Bayern. To avoid settlement of the granules, which often occurred in earlier glazing concepts and even caused destruction of the glazing, the granules were sandwiched between a double skin sheet made of PMMA. The sheet was mounted between two low-e coated glass panes. To optimize the thermal insulation, krypton was used as filling gas. This construction allows to achieve heat transfer coefficients of less than 0.4 W/(m2 K). Optimized granular layers provide high solar transmittance of 65% for a thickness of 20 mm. Thus a total solar energy transmittance of 35% for the whole glazing unit is achieved. The glazing has a thickness of less than 50 mm. Such aerogel glazings can be integrated into solar wall systems or used as lightscattering daylighting elements with vanishing energy losses over the heating period even for north facade integration. Optical and thermal properties of the developed granular aerogels as well as the thermal properties of the whole glazing unit are reported.  相似文献   

20.
In photovoltaic–thermal (PV/T) technology, the use of glass cover on the flat-plate hybrid solar collector is favorable to the photothermic process but not to the photovoltaic process. Because of the difference in the usefulness of electricity and thermal energy, there is often no straight forward answer on whether a glazed or unglazed collector system is more suitable for a specific application. This glazing issue was tackled in this paper from the viewpoint of thermodynamics. Based on experimental data and validated numerical models, a study of the appropriateness of glass cover on a thermosyphon-based water-heating PV/T system was carried out. The influences of six selected operating parameters were evaluated. From the first law point of view, a glazed PV/T system is found always suitable if we are to maximize the quantity of either the thermal or the overall energy output. From the exergy analysis point of view however, the increase of PV cell efficiency, packing factor, water mass to collector area ratio, and wind velocity are found favorable to go for an unglazed system, whereas the increase of on-site solar radiation and ambient temperature are favorable for a glazed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号