首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ignoring crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading. Crack closure is believed to contribute to the crack growth retardation, although the specific closure mechanism is debatable. The delay period and corresponding crack growth rate transients following overload and overload/underload cycles were systematically measured as a function of load ratio (R) and overload magnitude. These responses are correlated in terms of the local “driving force” for crack growth, i.e. the effective stress intensity factor range (ΔKeff). Experimental results are compared with the predictions of a Dugdale-type crack closure model and improvements in the model are suggested.  相似文献   

2.
Fatigue crack growth in structure components, which is subjected to variable amplitude loading, is a very complex subject. Studying of fatigue crack growth rate and fatigue life calculation under spectrum loading is vital in life prediction of engineering structures at higher reliability. The main aim of this paper is to address how to characterize the load sequence effects in fatigue crack propagation under variable amplitude loading. Thus, a fatigue life under various load spectra, which was predicted, based on the Austen, Forman and NASGRO models. The findings were then compared to the similar results using FASTRAN and AFGROW codes. These models are validated with the literature-based fatigue crack growth test data in 2024-T3 Aluminium alloys under various overload, underload, and spectrum loadings. With the consideration of the load cycle interactions, finally, the results show a good agreement in the behaviour with small differences in fatigue life compare to the test data.  相似文献   

3.
The fatigue crack growth behavior under constant amplitude and under single overload of 2024 aluminum alloy in sheet and plate product form has been investigated. Constant amplitude fatigue crack growth tests showed superior crack growth resistance of the plate attributed to a pronounced roughness induced crack closure as a result of the coarse and elongated grain structure. Crack growth tests with single overload showed that the retardation effect caused by the overload is not primarily influenced by roughness crack closure at the crack path. In this case, the sheet material with lower yield strength revealed a higher retardation effect than the plate material. The observed crack growth behavior has been simulated with the LTSM-F model, which accounts for retardation of crack growth after an overload due to material strain hardening at the crack front. Dissimilar strain hardening at the crack tip due to different yield strength for the sheet and plate has been considered by means of strength gradients inside the overload plastic zone. The analytical results confirmed the observed material crack growth trends.  相似文献   

4.
Almost all load bearing components usually experience variable amplitude loading (VAL) rather than constant amplitude loading (CAL) during their service lives. A single overload cycle introduced in a constant amplitude fatigue loading retards fatigue crack growth and increases residual fatigue life. Although many models have been proposed on this subject, but life prediction under these complex situations is still under constant improvement. The present study aims at evaluating retardation in fatigue life due to application of a single tensile overload spike by adopting an exponential model. The proposed model calculates not only parameters related with overload induced retardation in fatigue crack growth, but also residual life in case of 7020-T7 and 2024-T3 aluminum alloys with reasonable accuracy without integration of rate equation. The model also covers stage-II and stage-III of post-overload period.  相似文献   

5.
An analysis of fatigue crack closure under variable amplitude loading was made by using the finite element technique. Two basic types of variable amplitude loading were selected for the analysis; constant amplitude loading with a single overload and block loading. A characteristic variation of a crack closure level was found to exist for both types of loading: the trace of the crack closure level vs crack length rose to a maximum value and then decreased asymptotically. The characteristic behavior was explained in terms of the residual stress which had been induced by an overload or a load preceding to the variation. The predicted fatigue crack growth behavior which was obtained analytically was consistent with the experimental results, and it was concluded that the retardation and acceleration phenomena are closely correlated with the crack closure.  相似文献   

6.
7.
8.
Abstract— Constant and variable amplitude (VA) loading fatigue studies were carried out on a 6261 aluminium alloy using cylindrical plain hour-glass specimens. Crack growth was monitored via surface replication using cellulose acetate.
Crack growth results at constant amplitude loading show the typical intermittent high and low periods of growth rate associated with crack-microstructure interactions. Acceleration in growth rate during an overload block depends on crack length and stress amplitude ratio. It appears to pass through a maximum at a crack length corresponding to the first microstructural barrier. Microstructural-based modelling is therefore required for small fatigue cracks, rather than solely closure-based modelling. The Navarro-de los Rios model of short fatigue crack growth appears able to provide good indications of crack growth rates under VA block loading, and gives reasonable life predictions.
For short cracks (surface length < 80 μm) and a small overload ratio (6.7%), crack growth may show severe retardation during the overload block. This is ascribed to crack tip blunting being more important than the increase in stresses when closure is low. It appears from a Miner's rule type exercise, that VA block loading has its major effect on growth at a surface crack length of 20 μm. This means that the crack initiation period cannot be ignored in life prediction models for small fatigue cracks.  相似文献   

9.
单一过载使得疲劳裂纹扩展速率减缓,可以提高疲劳寿命,但对于多个过载作用下疲劳裂纹扩展仍未明确,有待于进一步研究。针对Q345R标准紧凑拉伸试样,在常幅循环加载条件下引入多个拉伸过载,研究多个过载作用对疲劳裂纹扩展行为的影响。研究结果表明:在保持应力比、过载位置和过载比不变的情况下,随着过载间距增加,迟滞效应先增加后减小;过载间距循环数是单一过载迟滞循环数的一半时,da/dNmin达到最小,迟滞效应最明显。采用含有过载交互作用参数ØI的修正Wheeler模型对不同的过载间距疲劳裂纹扩展行为试验结果进行预测,预测的结果与试验结果能够很好的吻合。  相似文献   

10.
ABSTRACT Fatigue crack growth of fibre reinforced metal laminates (FRMLs) under constant and variable amplitude loading was studied through analysis and experiments. The distribution of the bridging stress along the crackline in centre‐cracked tension (CCT) specimen of FRMLs was modelled numerically, and the main factors affecting the bridging stress were identified. A test method for determining the delamination growth rates in a modified double cracked lap shear (DCLS) specimen was presented. Two models, one being fatigue‐mechanism‐based and the other phenomenological, were developed for predicting the fatigue life under constant amplitude loading. The fatigue behaviour, including crack growth and delamination growth, of glass fibre reinforced aluminium laminates (GLARE) under constant amplitude loading following a single overload was investigated experimentally, and the mechanisms for the effect of a single overload on the crack growth rates and the delamination growth rates were identified. An equivalent closure model for predicting crack‐growth in FRMLs under variable amplitude loading and spectrum loading was presented. All the models presented in this paper were verified by applying to GLARE under constant amplitude loading and Mini‐transport aircraft wing structures (TWIST) load sequence. The predicted crack growth rates are in good agreement with test results.  相似文献   

11.
This paper proposes a nonlinear dynamic model of fatigue crack growth in the state-space setting based on the crack closure concept under cyclic stress excitation of variable amplitude and random loading. The model state variables are the crack length and the crack opening stress. The state-space model is capable of capturing the effects of stress overload and underload on crack retardation and acceleration, and the model predictions are in fair agreement with experimental data on the 7075-T6 aluminum alloy. Furthermore, the state-space model recursively computes the crack opening stress via a simple functional relationship and does not require a stacked array of peaks and valleys of stress history for its execution; therefore, savings in both computation time and memory requirement are significant. As such, the state space model is suitable for real-time damage monitoring and control in operating machinery. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The crack growth behavior of AL6XN stainless steel was experimentally investigated using round compact tension (CT) specimens. The influences of the R-ratio (the ratio of the minimum load over the maximum applied load in a cycle), the tensile and compressive overloads, and the loading sequence on crack growth were studied in detail. The results from the constant-amplitude experiments show a sensitivity of the crack growth rate to the R-ratio. The application of a tensile overload has a profound effect on crack growth, resulting in a significant retardation in the crack propagation rate. A compressive overload (underload) leads to a short-lived acceleration in crack growth. Results from the two-step high-low loading reveal a period of crack growth retardation at the beginning of the lower amplitude step, an effect similar to that of a single overload. A crack driving force parameter together with a modified Wheeler model is found to correlate the crack growth experiments well.  相似文献   

13.
This paper presents the investigation regarding fatigue crack growth prediction in Fibre Metal Laminates under variable amplitude fatigue loading. A recently developed constant amplitude analytical prediction model for Fibre Metal Laminates has been extended to predict fatigue crack growth under variable amplitude loading using the modified Wheeler model based on the Irwin crack-tip plasticity correction and effective stress intensity factor range (ΔKeff). The fatigue crack growth predictions made with this model have been compared with crack growth tests on GLARE center-cracked tension specimens under selective variable amplitude loading as well as flight simulation loading. The accuracy of the model is discussed in comparison with the experimental fatigue crack growth data.  相似文献   

14.
变幅载荷下纤维金属层板的疲劳与寿命预测   总被引:4,自引:0,他引:4  
文章建立了纤维金属层板等幅疲劳载荷下的疲劳裂纹扩展速率与寿命预测模型。在此基础上对玻璃纤维-铝合金层板(GLARE)的疲劳裂纹扩展与分层扩展行为进行了试验研究,探讨了层板过载疲劳行为的机理,提出了纤维金属层板变幅载荷下疲劳寿命预测的等效裂纹闭合模型,并在GLARE层板上得到了验证。  相似文献   

15.
It is well-known that one of the major characteristics of variable fatigue loads, especially overloads, is the retardation of the fatigue crack due to the complex interaction of many factors such as the overload ratio, the timing of overloads, the stress ratio, the yield stress of the material, the thickness of the structure, and the stress history. However, studies of the combined effect of mixed-mode I+II constant amplitude fatigue loadings and a mixed-mode I+II single overload on fatigue behavior are still scant. In this study, fatigue tests were conducted under mixed-mode I+II constant amplitude loadings with a mixed-mode I+II single overload, with reference to the variation of fatigue crack retardation. The formation of the overload plastic zone (OPZ) ahead of the crack tip under a mixed-mode I+II single overload is studied experimentally by the measurement of the shape and size of the OPZ. The behavior of fatigue crack propagation under mixed-mode loading conditions is examined by changing the loading mode of a single overload, and the relationship between the mixed-mode I+II single overload and the behavior of fatigue crack propagation in terms of the characteristics of the OPZ is evaluated. The empirical modeling of the fatigue life under mixed-mode I+II constant amplitude loadings is proposed by considering the characteristics of both the OPZ and the combination of the mode-mixity of mixed-mode I+II constant amplitude loadings and a mixed-mode I+II single overload.  相似文献   

16.
Growth of a long mode I crack under variable fatigue loading was experimentally investigated on mild steel specimens. A dynamic elastic-plastic two-dimensional finite element program, purposely developed for the simulation of cyclic crack tip deformation, was utilised to model the transient effects on crack tip advance. The model accommodated crack tip opening displacement and both crack tip and crack edge closure. Fifty one different cycle patterns were analysed to include the application of a single overload, a single underload, a single cycle having a combined overload and underload and finally loading blocks of different sequences. Correlations of experimental fatigue crack growth rates were made from knowledge of crack tip deformation behaviour, including the use of data found in the literature. Specimens of eight materials and different geometries were analysed to determine the validity of the present approach.  相似文献   

17.
Fatigue crack growth tests were carried out under constant-ΔK loading interrupted by a single overload (OL). The specimen material was a ductile austenitic CrNi alloy. Variables of the experimental program were the severity of the OL and the specimen thickness, the latter one in view of plane strain/plane stress aspects. The results confirm the delayed retardation phenomenon as abundantly observed for aluminium alloys. Fractographic observations were made with special attention to crack extension during the OL and base line cycles following the OL, a topic somewhat neglected in previous studies. Striation observations indicate an increased crack growth rate in a small number of cycles after the application of the OL. This is an unexpected new phenomenon, which could be made with innovative fractographic procedures. It is associated with crack tip blunting and crack tip opening displacements for which a model was proposed. The results should be of interest for fracture mechanics prediction models on fatigue crack growth under variable amplitude loading.  相似文献   

18.
The current understanding of the underlying reasons behind the load interaction effects in fatigue crack growth under variable amplitude loading is presented. Mechanistic arguments proposed to control the load interaction phenomena are reviewed and evaluated based on their capability to qualitatively explain empirical trends in variable amplitude fatigue crack growth summarized in Part I [ Fatigue Fract. Engng Mater. Struct. 1998, 21 (8), 987–1006] of the present paper. Mechanisms linked to plastic straining at the crack tip enable an interpretation of the majority of the experimental results. Some observations, however, which cannot be understood in terms of plasticity-induced crack closure, or which are even in contradiction with the crack closure approach, indicate a possible role of other factors. A general conclusion is that conditions under which various phenomena can affect variable amplitude fatigue crack growth and interactions between them are insufficiently recognized.  相似文献   

19.
On the development of crack closure at high R levels after an overload   总被引:1,自引:0,他引:1  
ABSTRACT In a 1999 paper it was asserted that crack closure cannot be of major importance in the mechanism of crack retardation following an overload, particularly since the authors found no evidence for crack closure at high R‐values, although crack retardation was observed. In the present work, overload experiments were carried out at R = 0.5 and crack closure was observed. In addition, the rate of fatigue crack growth in both constant amplitude and overload tests was found to be a function of ΔKeff. It is concluded that crack closure is an important part of the retardation mechanism.  相似文献   

20.
Compact specimens were employed to study fatigue crack growth of 2024-T4 aluminum alloy under constant/variable amplitude loading. Apparent R-ratio effect under constant amplitude loading was identified with the nominal stress intensity factor range. Fatigue crack growth rates predicted by a unified model agreed with the experimental data well. Single tensile overload resulted in significant retardation of crack growth which was fully recovered after propagating out of overload-affected zone. Retarded crack growth induced by three-step sequence loading was heavily dependent on two sequence loading parameters. The influence of variable amplitude loading on crack growth was reasonably characterized by Wheeler’s model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号