首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recognized way of improving the fatigue resistance of a fastener hole is to introduce compressive tangential residual stress around it. This can be achieved by using a cold expansion method in which an oversized pin or ball is forced through the hole to produce a local plastic region surrounded by an elastic one. Once the pin or ball is removed allowing the elastic region to spring back it results in compressive tangential residual stress around the hole. In practise, however, it is found that such a cold expansion method creates a non‐uniform residual stress distribution through the plate thickness and even tensile residual stress can be created at the entrance and exit faces. In this paper a new method of cold expansion is proposed. It uses a tapered pin with a mating tapered split sleeve and creates an almost uniform compressive residual stress around the hole as shown by FE method. Also, fatigue tests were carried out to verify that the method does significantly improve fatigue life. Finally the tangential residual stress distribution and fatigue life improvement of this new method were compared with those of a well‐established cold expansion method and it was shown that the new method is more efficient in improving fatigue life.  相似文献   

2.
芯棒锥面结构对孔冷挤压强化残余应力场的影响   总被引:2,自引:0,他引:2  
为了在紧固孔周引入均匀的残余压应力,以延长紧固孔构件的疲劳寿命、提高其抗应力腐蚀性能,利用ANSYS有限元软件,建立了轴对称弹塑性有限元模型,对直接芯棒冷挤压强化过程进行了仿真,特别是对芯棒的前锥段曲线结构形式进行了设计与分析,研究了前锥段曲线形式对残余应力场分布的影响.结果表明:孔壁表面的周向残余应力分布复杂且不均匀,比较而言,外凸型正弦曲线型芯棒所产生的残余压应力沿孔壁深度方向分布更加均匀;几种曲线形式的芯棒在上表面近孔边区域均产生了径向残余拉应力,在孔的挤入段产生了轴向残余拉应力,但外凸型正弦曲线型芯棒在上述区域所产生的残余拉应力较小,且分布区域也较小.  相似文献   

3.
Cold expansion process is a well-known technique for improving the fatigue life of aerospace structures by introducing a compressive residual stress around the fastener holes. However, there are concerns about the residual stress distribution around those holes which are located near the free edges of structure. The purpose of this study is to investigate the influence of edge distance ratio (e/D) on the residual stress distribution around a cold expanded hole in Al 2024 alloy. A two-dimensional finite element simulation was carried out with various degrees of cold expansion and various values of e/D. It was found that for edge distance ratios less than e/D = 3, there are considerable effects on the residual stress profile. Also, the dependency of residual stress distribution on the degree of expansion was reduced significantly for small e/Ds. The results revealed that the bulging of the plate free edge increases with reduction of e/D but in worse cases the maximum bulging at the plate free edge was lower than 3% of the hole radius. The weight function method was then used for determining stress intensity factors for a crack emanating from a cold expanded hole.  相似文献   

4.
The beneficial effects of cold expansion have been well documented in previous studies, yet the performance of cold expanded plates exposed to elevated temperatures is an area of technical interest. In this research, finite element (FE) simulations along with experimental fatigue tests have been carried out to investigate the effect of exposure to elevated temperature on residual stress distribution and subsequent fatigue life of cold expanded fastener holes. According to the obtained results, creep stress relaxation occurs due to exposure to 120 °C for 50 h. FE results demonstrate a non-uniform residual stress relaxation regime through the plate thickness around the cold expanded hole and the fatigue test results show that the subsequent fatigue lives have significantly decreased.  相似文献   

5.
Cold expansion is an efficient way to improve the fatigue life of an open hole. The residual stress fields of cold expansion holes are vital for key components designing, manufacturing and fatigue properties assessment. In this paper, three finite element models have been established to study the residual stress fields of cold expansion hole, experiments were carried out to measure the residual stress of cold expansion hole and verify simulation results. Three groups of specimens with different cold expansion levels are examined by fatigue test. The fracture surfaces of specimens are observed by scanning electron microscope. The finite element method (FEM) results show, with interference values develop, the maximum values of circumferential residual compressive/tensile stresses increase in “infinite” and “finite” domain, and a higher positive stress values are obtained at the boundary of “finite” domain. The effects of the friction between the mandrel and the hole’s surface and two cold expansion techniques on the distribution of residual stress is local, which only affects the radial residual stress around the maximum value and the circumferential residual stress near the hole’s edge. Crack always initiates near entrance face and the crack propagation speed along transverse direction is faster than that along axial direction.  相似文献   

6.
The split sleeve cold expansion process is a cost effective method of enhancing the fatigue performance of aircraft fastener holes. However, the 3‐D nature of the induced residual stress fields is not fully understood. For this research, 2‐D and 3‐D models with uniform hole expansion and 3‐D models with expansion produced by contact with a rigid mandrel were developed. The models’ relative capabilities of capturing the residual stress fields were then evaluated. The residual stress profiles varied significantly through the thickness of the workpiece and were also strongly influenced by the direction of mandrel motion. Therefore the uniform expansion models were inadequate. The 3‐D contact models indicate that the mandrel entry face is the critical fatigue location, reporting the lowest circumferential compressive stresses adjacent to the hole. The effect of varying the frictional coefficient and plastic hardening laws were also investigated using the 3‐D contact models.  相似文献   

7.
Abstract:  In this paper, we present results of residual stresses around a cold-worked fastener hole in a thin, finite plate. An analytical model, with plane stress conditions, elastic nonlinear–plastic loading and unloading taken into account, is explicitly presented and has been developed from existing analytical models and methodologies. The solution also accounts for elastic deformation of the mandrel, and is applicable to different sizes of hole and mandrel. A parametric study of the strain-hardening exponent, plate size, Bauschinger parameter and expansion ratio was carried out in the context of the present solution. A sample study of a plate subjected to 4% hole-cold expansion was performed to compare this model with other analytical predictions, finite element simulation and X-ray diffraction experimental results. A brief review of related issues is given. This work is intended to present completely the closed-form equations able to generate residual stress profiles with ease around a cold-expanded hole in a thin, finite plate where boundary conditions are at issue.  相似文献   

8.
Cold expansion of fastener holes creates compressive residual stresses around the hole. This well‐known technique improves fatigue life by reducing tensile stress around the holes. However, cyclic loading causes these compressive residual stresses to relax, thus reducing their beneficial effect. Estimation of the fatigue life without considering the residual stress relaxation might lead to inaccurate results. In this research, numerical studies were carried out using 2D finite element (FE) models to determine the initial tangential and radial residual stress distributions generated by cold expansion and their relaxation under cyclic loading. To predict the stress relaxation, four nonlinear kinematic hardening models were applied in simulation of stress/strain path. The results obtained from the FE analysis were compared with available experimental results. A good agreement between the numerical and experimental results was observed.  相似文献   

9.
本文基于有限元技术模拟了开缝衬套挤压和直接芯棒挤压两种孔挤压工艺,对比研究了两种不同工艺导致的孔壁材料轴向流动和孔壁残余应力场。结果表明:开缝衬套挤压可有效抑制材料向挤出端流动,这在飞机夹层孔结构挤压中可减小夹层间隙尺寸;衬套开缝对应孔壁区域残余应力有突变,但仍然是对抗疲劳有利的压应力,而非拉应力;开缝衬套挤压挤入端孔边是压应力,而直接芯棒挤压是拉应力;相同干涉量条件下两种工艺引入的残余压应力峰值近似,但开缝衬套挤压残余压应力场域较直接芯棒挤压增大了约1 mm.  相似文献   

10.
Cold expansion of fastener holes is a common way of improving fatigue performance of airframes. Among the several techniques applicable, the split-sleeve method is the most accepted in creating beneficial compressive residual stresses around expanded holes. In the present work, residual stresses at expanded holes in several types of aluminium plates produced by two different techniques, split-sleeve and roller burnishing, have been evaluated by the novel destructive Sachs method and then compared. It was found that stress distribution particularly at the vicinity of the hole was sensitive to the method of expansion and plate thickness, due to differing characteristics of the plastic material flow. Thus, secondary reverse yielding after cold expansion found to reduce residual hoop stresses at the edge of the hole, and excessive expansion above a limit, was thought to increase reverse yielding. S–N data revealed that no benefit was gained from expanding beyond this limit. It was suggested that the reduction in the number of cycles to crack initiation or more often to crack growth was due to increased reverse yielding at the vicinity of the expanded hole.  相似文献   

11.
Abstract— Cold-expansion of fastener holes is now commonly used within the aerospace industry to increase the fatigue endurance of airframes. Although a number of methods of cold expansion are possible, the split-sleeve cold-expansion process is the most widely accepted and is frequently used in the repair and manufacture stages of both military and civil aircraft. In the present work, the redistribution of residual hoop stresses due to the application of constant amplitude fatigue loading at 4% cold-expanded holes has been studied. A modified Sachs method was adopted to evaluate the residual stress profiles and a replication technique was used to quantify crack growth. It was found that the decay of the residual hoop stress profile near the bore of the hole was due to the initiation and growth of small fatigue cracks. Cracks were found to initiate both near and below the fatigue limit, but subsequently arrested so stabilising the overall residual stress profile.  相似文献   

12.
The United States Air Force has requirements to inspect and cold expand potentially thousands of fastener holes for an aircraft fleet, and the presence of existing cracks at those fastener holes is expected. Fatigue experiments were performed to investigate the resulting fatigue crack growth life of a fastener hole that contained a representative ‘unknown’ crack at the time of inspection (approximately 0.050 in. in length) at a short edge margin hole that was then cold expanded and compare that to a non‐cold expanded hole and a cold expanded hole with no pre‐existing cracks. The United States Air Force analytical approach used to account for the benefit due to cold expansion was compared to the experimental data and does not consistently provide conservative predictions.  相似文献   

13.
A new conception for increasing fatigue life of large number of fastener holes in aircraft structures is developed. It is accomplished by a new method, called friction stir hole expansion (FSHE). This method not only reduces labour and time consumption, but it also decreases the overall cost for processing a large number of holes in structures made of aerospace grade 2024‐T3 aluminium alloy. FSHE combines the advantages of friction stir processing with these of mandrel cold working methods in two ways: a micro effect, expressed in hole surface modification, and a macro effect, expressed by the introduction of beneficial compressive residual macro stresses. The effectiveness of the method has been assessed by fatigue tests. Finite element simulations have been carried out. It has been proven that the greater fatigue life of fastener holes, processed by FSHE, is a consequence of the obtained micro effect.  相似文献   

14.
Aluminium alloy 6082 (HE30) and aluminium-lithium alloys 8090 and 2091 were examined after holes were cut and cold-expanded by means of an oversized mandrel. The extent of cold working was analysed by two techniques, namely neutron diffraction (ND) and the Sachs cutting method (SM). While the former requires neutron diffraction facilities and is a non-destructive measurement technique, the latter is based on the removal of small layers of material from the inside of the expanded hole while recording the apparent change in strain by the removal of the layer. The stress distributions analysed by ND are compared with the method of Sachs and the results are discussed with respect to distances over which the state of stress changes from compression to tension. These changes are significant in explaining the improvement of service life in mechanical fastener holes from the process of cold expansion.

In all alloys examined it was found that the improved fatigue performance was a function of the degree of expansion. All alloys exhibited a maximum in expansion beyond which fatigue life deteriorated. This was due to crack initiation during excessive hole enlargement exceeding the yield strength of the alloys. Crack initiation usually started from inside the hole of the fastener but always perpendicular to the applied load. The initial stages of growth occurred perpendicularly over a short distance but further growth occurred on a plane with normals inclined at about 55–60° to the tensile axis. This behaviour was due to the presence of texture development in the alloys which is beneficial to the resistance of both fatigue crack initiation and propagation.  相似文献   


15.
In this paper a series of residual stress measurements and fatigue crack growth tests have been carried out using aluminium alloy 2650 specimens containing cold expanded and non cold expanded holes. Residual stress measurements have been done after cold expansion and after various loading and temperature conditions. In order to measure an angular variation of residual stresses, X-ray and a new technique called the Garcia–Sachs method have been employed. Results revealed that residual stress relaxation occurred as a result of exposure at 150°C. The magnitude of relaxation was shown to be dependent on the level and the sign of externally applied load. Fatigue crack growth tests have been carried out at 20°C and 150°C for both cold expanded and non-cold expanded conditions. Fatigue crack growth rates in specimens containing cold expanded fastener holes were affected significantly by elevated temperature exposure. Depending on the exposure time and loading conditions the fatigue life improvement was found to be between one and greater than 10 for tests at 20°C.  相似文献   

16.
Creep behaviour of aluminium alloys is also observed at room temperature. As a result, a relaxation occurs of deliberately introduced beneficial residual stresses around fastener holes, before the relevant structural component is subjected to exploitation. Therefore, to adequately asses the life-time of the component with cold worked holes, it is necessary to quantify this relaxation. In this paper a combined iterative approach for building a time-dependent creep constitutive model of aluminium alloys at room temperature has been developed in order to be used in finite element (FE) simulations of the cold hole working process. The approach is based on an experimental study of the change in diameters of cold worked holes through mandrel cold working method and a subsequent series of FE simulations of the cold working process and of the following creep behaviour to determine the necessary equivalent stresses in the constitutive model. The obtained creep constitutive model has been founded on the power-law model. The model parameters A, n and m have been determined on the basis of a developed by the authors algorithm. The approach has been illustrated on D16T aluminium alloy widely used in the airspace industry. The material behaviour in the plastic field has been described by the nonlinear kinematic hardening model, obtained through a uniaxial tensile test. Both constitutive models have been used in FE simulations of the cold working processes and of subsequent residual stress relaxation around the cold worked open holes due to creep at room temperature. On the base of the FE results, mathematical models describing the residual stress relaxation have been obtained. Thus, the residual stresses are adequately evaluated immediately before introducing the structural component in operation.  相似文献   

17.
The fatigue life of 7075‐T6 aluminium specimens with countersunk fastener holes with cold expansion and interference‐fit fasteners with short edge margins was studied. The study was performed experimentally and through finite element analysis. The experiments measured the total fatigue life and crack growth. The results from the finite element analysis consisted of tangential residual stress profiles, which were combined with applied cyclic stresses for fatigue analysis. The experiments showed that the fatigue life improved with interference‐fit fasteners and cold expansion at all edge margins. The fatigue life also increased with increasing edge margin. The finite element results were used to make fatigue life predictions that corresponded reasonably well with the experimental results.  相似文献   

18.
A previous experimental study revealed fatigue life reduction in Al 7075-T6 cold expanded fastener holes exposed to 120 °C for 1 h. The obtained experimental evidence indicated a residual stress reduction associated with material softening at elevated temperatures, termed as thermo-mechanical stress relaxation. In order to identify and characterize the potential features of this phenomenon, FE analysis is carried out in this study and a detailed body of evidence is provided for occurrence of a time-independent thermo-mechanical residual stress relaxation around cold expanded fastener holes due to exposure to elevated temperature. The results of FE simulation demonstrate a good agreement with experimental results obtained earlier.  相似文献   

19.
This paper presents an investigation of the fatigue crack growth (FCG) behavior at fastener holes in a high strength steel, 30CrMnSiNi2A, before and after a cold-expansion process. The fatigue life of coldworked specimens was significantly increased compared to non-coldworked ones and increased the lower applied stress level. From a study of the residual stress distribution near the edge of the hole, it was found that the experimental residual compressive stresses in absolute values were much less than the calculated values derived by previous analytical methods. Thus, a simplified residual stress model for describing the FCG behavior at coldworked fastener holes is proposed, from which, the δKeff and fatigue lives of specimens after cold-expansion can be predicted satisfactorily for engineering applications.  相似文献   

20.
The influence of processing sequence of laser shot peening (LSP) on the fatigue properties of fastener hole was investigated with finite element method and experiments. The results show that different processing sequences lead to different residual stress distributions and different fatigue lives. The compressive residual stresses (CRS) are squeezed into two-sided surface layers of fastener hole by two sided laser shot peening, and the ellipse CRS fields are found on both sided surfaces of sample. However, when the pre-drilling hole in dog-bone specimen is subjected to LSP, the tensile stresses appear at its mid-thickness region, while the CRS distribute in the entire thickness region of the post-drilling hole after LSP. The fatigue crack initiation of specimens treated by LSP stems from the subsurface layer of hole edge. The fatigue striation spacing of specimen with post-drilling hole after LSP is narrower in comparison with that of case with pre-drilling hole before LSP. The fatigue life of post-drilling hole is longer than that of the pre-drilling hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号