首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generalized traveling salesman problem (GTSP) is an extension of the well-known traveling salesman problem. In GTSP, we are given a partition of cities into groups and we are required to find a minimum length tour that includes exactly one city from each group. The recent studies on this subject consider different variations of a memetic algorithm approach to the GTSP. The aim of this paper is to present a new memetic algorithm for GTSP with a powerful local search procedure. The experiments show that the proposed algorithm clearly outperforms all of the known heuristics with respect to both solution quality and running time. While the other memetic algorithms were designed only for the symmetric GTSP, our algorithm can solve both symmetric and asymmetric instances.  相似文献   

2.
This paper proposes a new method for finding principal curves from data sets. Motivated by solving the problem of highly curved and self-intersecting curves, we present a bottom-up strategy to construct a graph called a principal graph for representing a principal curve. The method initializes a set of vertices based on principal oriented points introduced by Delicado, and then constructs the principal graph from these vertices through a two-layer iteration process. In inner iteration, the kernel smoother is used to smooth the positions of the vertices. In outer iteration, the principal graph is spanned by minimum spanning tree and is modified by detecting closed regions and intersectional regions, and then, new vertices are inserted into some edges in the principal graph. We tested the algorithm on simulated data sets and applied it to image skeletonization. Experimental results show the effectiveness of the proposed algorithm.  相似文献   

3.
Several graph libraries have been developed in the past few decades, and they were basically designed to work with a few graphs. However, there are many problems in which we have to consider all subgraphs satisfying certain constraints on a given graph. Since the number of subgraphs can increase exponentially with the graph size, explicitly representing these sets is infeasible. Hence, libraries concerned with efficiently representing a single graph instance are not suitable for such problems. In this paper, we develop Graphillion, a software library for very large sets of (vertex-)labeled graphs, based on zero-suppressed binary decision diagrams. Graphillion is not based on a traditional representation of graphs. Instead, a graph set is simply regarded as a “set of edge sets” ignoring vertices, which allows us to employ powerful tools of a “family of sets” (a set of sets) and permits large graph sets to be handled efficiently. We also utilize advanced graph enumeration algorithms, which enable the simple family tools to understand the graph structure. Graphillion is implemented as a Python library to encourage easy development of its applications, without introducing significant performance overheads. In experiments, we consider two case studies, a puzzle solver and a power network optimizer, in which several operations and heavy optimization have to be performed over very large sets of constrained graphs (i.e., cycles or forests with complicated conditions). The results show that Graphillion allows us to manage a huge number of graphs with very low development effort.  相似文献   

4.
Coloring large graphs based on independent set extraction   总被引:1,自引:0,他引:1  
This paper presents an effective approach (EXTRACOL) to coloring large graphs. The proposed approach uses a preprocessing method to extract large independent sets from the graph and a memetic algorithm to color the residual graph. Each preprocessing application identifies, with a dedicated tabu search algorithm, a number of pairwise disjoint independent sets of a given size in order to maximize the vertices removed from the graph. We evaluate EXTRACOL on the 11 largest graphs (with 1000 to 4000 vertices) of the DIMACS challenge benchmarks and show improved results for four very difficult graphs (DSJC1000.9, C2000.5, C2000.9, C4000.5). The behavior of the proposed algorithm is also analyzed.  相似文献   

5.
This paper presents some new methods for ordering spatial entities to reflect spatial proximity. The ordering methods work not only for point sets, but also for a variety of types of 1-D, 2-D, and higher-dimensional spatial objects. The paper describes some important, less traditional applications for spatially sorted data, including list frames for systematic sampling and efficient organization of hierarchical geographic neighborhoods. The new methods derive from methods for ordering vertices or edges in a tree (connected acyclic graph), making novel use of an Eulerian tour to assign a cyclic order. The new orderings are canonical in the sense that they are coordinate system independent, rotation invariant, and do not depend on prior bucketing of space as do some standard existing methods. They depend instead on the spatial distribution of the input data and on the metric of the underlying space. We call our new orderings tree-orders. They can be constructed in linear time from topological graph data structures; and we show that they are fully characterized by a useful proximity-preserving property called branch-recursion.  相似文献   

6.
In recent years, many information networks have become available for analysis, including social networks, road networks, sensor networks, biological networks, etc. Graph clustering has shown its effectiveness in analyzing and visualizing large networks. The goal of graph clustering is to partition vertices in a large graph into clusters based on various criteria such as vertex connectivity or neighborhood similarity. Many existing graph clustering methods mainly focus on the topological structures, but largely ignore the vertex properties which are often heterogeneous. Recently, a new graph clustering algorithm, SA-cluster, has been proposed which combines structural and attribute similarities through a unified distance measure. SA-Cluster performs matrix multiplication to calculate the random walk distances between graph vertices. As part of the clustering refinement, the graph edge weights are iteratively adjusted to balance the relative importance between structural and attribute similarities. As a consequence, matrix multiplication is repeated in each iteration of the clustering process to recalculate the random walk distances which are affected by the edge weight update. In order to improve the efficiency and scalability of SA-cluster, in this paper, we propose an efficient algorithm In-Cluster to incrementally update the random walk distances given the edge weight increments. Complexity analysis is provided to estimate how much runtime cost Inc-Cluster can save. We further design parallel matrix computation techniques on a multicore architecture. Experimental results demonstrate that Inc-Cluster achieves significant speedup over SA-Cluster on large graphs, while achieving exactly the same clustering quality in terms of intra-cluster structural cohesiveness and attribute value homogeneity.  相似文献   

7.
The Generalized Traveling Salesman Problem (GTSP) is a generalization of the well-known Traveling Salesman Problem (TSP), in which the set of cities is divided into mutually exclusive clusters. The objective of the GTSP consists in visiting each cluster exactly once in a tour, while minimizing the sum of the routing costs. This paper addresses the solution of the GTSP using a Memetic Algorithm. The originality of our approach rests on the crossover procedure that uses a large neighborhood search. This algorithm is compared with other algorithms on a set of 54 standard test problems with up to 217 clusters and 1084 cities. Results demonstrate the efficiency of our algorithm in both solution quality and computation time.  相似文献   

8.
A separator theorem for a class of graphs asserts that every graph in the class can be divided approximately in half by removing a set of vertices of specified size. Nontrivial separator theorems hold for several classes of graphs, including graphs of bounded genus and chordal graphs. We show that any separator theorem implies various weighted separator theorems. In particular, we show that if the vertices of the graph have real-valued weights, which may be positive or negative, then the graph can be divided exactly in half according to weight. If k unrelated sets of weights are given, the graph can be divided simultaneously by all k sets of weights. These results considerably strengthen earlier results of Gilbert, Lipton, and Tarjan: (1) for k=1 with the weights restricted to being nonnegative, and (2) for k>1 , nonnegative weights, and simultaneous division within a factor of (1+ε ) of exactly in half. Received November 21, 1995; revised October 30, 1997.  相似文献   

9.
许多来自工业应用的优化问题都是NP难问题。确定参数可解FPT作为处理这类问题的另外一种思路,在最近的10多年中受到了广泛的关注。支配集问题是图论中最重要的NP完全的组合优化问题之一,即使对于FPT体系而言,一般图中的支配集问题属于W[2]完全的,意味着不可能设计出复杂度为f(k)no(1)的算法。在本文中,我们考虑在给定的平面图G=(V,E)中参数化支配集问题,给定参数k,看是否存在大小为k的顶点集合支配图中的其他顶点,当把问题限定在平面图上,这个问题属于确定参数可解。本文给出了基于两组归约规则的搜索树算法,通过使用规约技术化简实例,构造搜索树,得到了复杂度为O(8kn)的算法,同时通过相关实验结果显示了归约规则对算法的作用。  相似文献   

10.
按照费用函数满足约束条件的不同,可以把广义旅行商问题(GeneralizedTravelingSalesmanProblem,简称GTSP)分为两类。目前,对GTSP解法的研究主要是面向费用函数满足三角不等式的第一类问题,而对于费用函数不满足三角不等式的第二类问题,则研究的比较少。文章针对第二类GTSP问题,提出了在广义染色体中加入虚顶点的新遗传算法。经过14个TSP问题库内的基准问题的测试表明,新算法是有效的。  相似文献   

11.
12.
《Graphical Models》2012,74(4):233-243
Remeshing aims to produce a more regular mesh from a given input mesh, while representing the original geometry as accurately as possible. Many existing remeshing methods focus on where to place new mesh vertices; these samples are placed exactly on the input mesh. However, considering the output mesh as a piecewise linear approximation of some geometry, this simple scheme leads to significant systematic error in non-planar regions. Here, we use parameterised meshes and the recent mathematical development of orthogonal approximation using Sobolev-type inner products to develop a novel sampling scheme which allows vertices to lie in space near the input surface, rather than exactly on it. The algorithm requires little extra computational effort and can be readily incorporated into many remeshing approaches. Experimental results show that on average, approximation error can be reduced by 40% with the same number of vertices.  相似文献   

13.
Szegedy’s quantum walk is a quantization of a classical random walk or Markov chain, where the walk occurs on the edges of the bipartite double cover of the original graph. To search, one can simply quantize a Markov chain with absorbing vertices. Recently, Santos proposed two alternative search algorithms that instead utilize the sign-flip oracle in Grover’s algorithm rather than absorbing vertices. In this paper, we show that these two algorithms are exactly equivalent to two algorithms involving coined quantum walks, which are walks on the vertices of the original graph with an internal degree of freedom. The first scheme is equivalent to a coined quantum walk with one walk step per query of Grover’s oracle, and the second is equivalent to a coined quantum walk with two walk steps per query of Grover’s oracle. These equivalences lie outside the previously known equivalence of Szegedy’s quantum walk with absorbing vertices and the coined quantum walk with the negative identity operator as the coin for marked vertices, whose precise relationships we also investigate.  相似文献   

14.
In this paper, we address the problem of visual instance mining, which is to automatically discover frequently appearing visual instances from a large collection of images. We propose a scalable mining method by leveraging the graph structure with images as vertices. Different from most existing approaches that focus on either instance-level similarities or image-level context properties, our method captures both information. In the proposed framework, the instance-level information is integrated during the construction of a sparse instance graph based on the similarity between augmented local features, while the image-level context is explored with a greedy breadth-first search algorithm to discover clusters of visual instances from the graph. This framework can tackle the challenges brought by small visual instances, diverse intra-class variations, as well as noise in large-scale image databases. To further improve the robustness, we integrate two techniques into the basic framework. First, to better cope with the increasing noise of large databases, weak geometric consistency is adopted to efficiently combine the geometric information of local matches into the construction of the instance graph. Second, we propose the layout embedding algorithm, which leverages the algorithm originally designed for graph visualization to fully explore the image database structure. The proposed method was evaluated on four annotated data sets with different characteristics, and experimental results showed the superiority over state-of-the-art algorithms on all data sets. We also applied our framework on a one-million Flickr data set and proved its scalability.  相似文献   

15.
提出了一种基于图划分和图像搜索引擎的图像标注改善算法,通过对待标注图像的候选标注词进行去噪处理,提高标注的准确性.算法的核心思想是将候选标注词作为图的顶点,将标注词间的相关度作为边的权值,从而把图像标注改善问题转换为图划分问题.用2个参数对标注词间的相似度进行加权处理后计算出边的权值:参数1是根据图像搜索引擎返回结果计算出的候选标注词与待标注图像视觉特征之间的相关度;参数2是候选标注词在待标注图像所属页面中的重要程度,此参数仅适用于Web图像.然后,用启发式最大割算法对构造出的图进行二划分,最后从划分出的2个顶点集中选择其一作为最终标注.实验结果表明,对比已有方法,使用本算法对非Web图像和Web图像进行标注改善后,最终的标注结果都更加准确.  相似文献   

16.
提出了一种分水岭变换和结合空间信息的FCM聚类相结合的图像分割方法。方法采用基于图论的结合区域特征信息和空间信息的距离度量,以分水岭变换得到的图像分割小区域为节点构建一个连通加权图,通过计算图上不同节点之间的最短路径来度量不同区域之间的相似程度,从而实现过分割小区域的合并。该方法综合考虑了区域的特征之间的差异和空间位置的差异,与传统的FCM聚类方法在特征空间进行聚类相比,具有较强的噪声抑制能力。图像分割的实验结果证明了该算法的可行性和有效性。  相似文献   

17.
We consider a generalized version of the well known Traveling Salesman Problem called Covering Salesman problem. In this problem, we are given a set of vertices while each vertex i can cover a subset of vertices within its predetermined covering distance ri. The goal is to construct a minimum length Hamiltonian cycle over a subset of vertices in which those vertices not visited on the tour has to be within the covering distance of at least one vertex visited on the tour. The paper proposes an Integer Linear Programming based heuristic method which takes advantage of Integer Linear Programming techniques and heuristic search to improve the quality of the solutions. Extensive computational tests on the standard benchmark instances and on a new set of large sized datasets show the effectiveness of the proposed approach.  相似文献   

18.
Iterated greedy algorithms belong to the class of stochastic local search methods. They are based on the simple and effective principle of generating a sequence of solutions by iterating over a constructive greedy heuristic using destruction and construction phases. This paper, first, presents an efficient randomized iterated greedy approach for the minimum weight dominating set problem, where—given a vertex-weighted graph—the goal is to identify a subset of the graphs’ vertices with minimum total weight such that each vertex of the graph is either in the subset or has a neighbor in the subset. Our proposed approach works on a population of solutions rather than on a single one. Moreover, it is based on a fast randomized construction procedure making use of two different greedy heuristics. Secondly, we present a hybrid algorithmic model in which the proposed iterated greedy algorithm is combined with the mathematical programming solver CPLEX. In particular, we improve the best solution provided by the iterated greedy algorithm with the solution polishing feature of CPLEX. The simulation results obtained on a widely used set of benchmark instances shows that our proposed algorithms outperform current state-of-the-art approaches.  相似文献   

19.
高宏屹  张曦煌  王杰 《计算机工程》2021,47(2):60-68,76
针对当前链路预测算法无法有效保留网络图高阶结构特征的问题,提出一种生成对抗式分层网络表示学习算法.根据网络图的一阶邻近性和二阶邻近性,递归地对网络图进行边缘折叠和顶点合并,形成逐层规模变小的子网络图,使用Node2vec算法对规模最小的子网络图进行预处理,并将预处理结果输入到生成对抗式网络(EmbedGAN)模型中,学...  相似文献   

20.
针对度约束最小生成树问题,提出了一种新的快速算法。新的快速算法分为两个主要部分,第一部分从一棵最小生成树出发,构造一棵度约束树。第二部分设计了一种改进策略,从第一部分求得的度约束树出发,每次去掉树的一条边,将顶点按照连通性划分成两个集合,在不违反度约束的情况下,从这两个集合构成的边割中,选择一条权值减少最大的边添加到图中。通过大量的数值实验表明新的快速算法性能良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号