共查询到20条相似文献,搜索用时 15 毫秒
1.
目的提出5A06-O铝镁合金板材在不同温度及应变率条件下的统一本构方程。方法采用CCS-88000电子万能试验机对5A06-O铝镁合金板材进行不同变形温度和应变速率条件下的单向拉伸试验。结果随着温度的升高,流变应力明显下降,同时,应变会显著增加;在常温时,应变速率对流变应力的影响不明显,但当温度高于150℃时,流变应力均随着应变速率的增加而升高。结论提出了在温热条件下描述材料复杂流变曲线本构方程的建模方法-增函数相减法,通过该方法建立的本构方程形式简单,能够反映温度和应变率的影响,实现对复杂流变曲线较为准确的描述。 相似文献
2.
采用恒应变速率热压缩模拟实验,对Ti-5Mo-5V-1Cr-3A1(简称1Cr)钛合金在应变速率0.001~1s-1、变形温度700~900℃条件下进行研究.结果表明:该材料的流变应力对温度与应变速率敏感:当变形温度为700~800℃时,真应力-真应变曲线呈现动态再结晶单曲线特征;当变形温度为800~900℃时,低应变速率(0.001s-1)的真应力-真应变曲线呈现动态再结晶多应力峰值曲线特征,高应变速率(0.01~1s-1)的真应力-真应变曲线呈现动态回复曲线特征.1Cr合金在等温压缩变形时的流变行为可用包含Zener-Holomon参数的Arrhenius本构方程描述,变形激活能为456kJ/mol.金相结果显示,材料在热压缩过程中的动态行为除了与变形速率、变形温度等加工参数相关外,也与相应温度、变形速率下材料的组织及相结构有关.合金在低应变速率0.001s 1下热压缩变形时,在接近相变点或以上(800~900℃)温度范围内仍呈现动态再结晶行为,这与材料在此阶段发生的应变诱发马氏体转变密切相关,马氏体相的析出促使材料在热变形时趋向于发生动态再结晶行为. 相似文献
3.
目的研究变形温度、应变速率等热力参数对TC21钛合金流动应力的影响规律,并构建出TC21钛合金本构方程。方法在热模拟试验机上对TC21钛合金进行了等温恒应变速率压缩实验,分析其真应力-真应变曲线。结果获得了该合金在变形温度范围为760~920℃、应变速率范围为0.001~10 s-1的流动应力数据,采用多元线性回归法建立了该合金的本构方程。结论误差分析表明,该本构方程具有较高精度,可为TC21钛合金锻造过程中的数值模拟和锻造热力参数的合理制定提供理论依据。 相似文献
4.
5.
利用Gleeble-3500热模拟试验机进行等温恒应变热压缩实验,以实验获得的数据为基础,研究Ti-22Al-24Nb-0.5Y合金流变行为,通过正交实验对影响合金的流变应力因素进行分析,并建立基于BP神经网络的合金高温本构关系模型。结果表明:影响合金流变应力的主要因素依次为应变速率、变形温度和应变量;Ti-22Al-24Nb-0.5Y合金在热变形时的流变应力对应变速率和变形温度都较为敏感。当变形温度较低,应变速率较高时,合金变形呈流变软化特征,当变形温度较高,应变速率较低时,合金变形趋向于稳态流动;利用BP神经网络建立的合金高温本构关系模型,具有较高的精度,其相关性系数达到0.9949,平均相对误差在3.23%,预测值偏差在10%以内的数据点达98.79%,该预测模型可作为Ti2AlNb基合金塑性成形过程有限元模拟的本构关系。 相似文献
6.
根据位错动力学理论,忽略动态应变时效因素,将塑性变形的流变应力分解为非热应力、热激活应力和粘拽阻力3部分,建立了一个基于物理概念的本构模型。对HSLA-65结构钢的力学行为进行了研究,试验温度为77~700K,应变率为0.001~0.1s-1,真实塑性应变超过60%。结果表明,塑性流变应力随温度的降低、应变和应变率的增加而增大;在一定的温度和应变率范围发生动态应变时效现象,并且随应变率的提高,该现象将移向更高的温区。通过模型预测与试验结果的比较可知,所给本构关系能很好地描述较宽的温度与应变率范围内的塑性流变应力。 相似文献
7.
铝合金7050-T7451高温高应变率本构方程及修正 总被引:1,自引:0,他引:1
通过分离式霍普金森压杆(SHPB)及准静态压缩实验研究铝合金7050-T7451高温高应变率下流变应力特征,利用准静态实验数据获得本构方程应变强化参数,利用SHPB实验数据获得室温下不同应变率(400~2500s-1)的应变率强化参数,以及应变率为2500s-1不同温度下(250~600℃)的热软化参数.利用不同幂次多项式对Johnson-Cook本构方程的热软化项拟合,最终选择五次多项式作为修正后本构方程热软化项.利用修正后本构方程对不同温度条件下应力应变曲线进行预测,实验数据与预测曲线表现出良好一致性. 相似文献
8.
利用Gleeble-1500D热/力模拟试验机对半固态ZCuSn10铜合金坯料进行了单向压缩实验,研究了变形温度、应变速率对其真应力-应变曲线的影响规律,通过对真应力-应变曲线的回归分析,获得了半固态ZCuSn10铜合金的本构关系模型。结果表明,在其他变形条件相同的情况下,随着应变速率的增加,流变应力增加。随着变形温度的升高,流变应力降低。变形温度和应变速率相同时,随着应变量的增加,流变应力先快速增加,然后缓慢降低。半固态ZCuSn10铜合金流动本构模型可以用包含流变应力、应变速率、应变量、温度和液相率等参数的分阶段方程来描述。 相似文献
9.
采用Gleeble-1500热模拟试验机对一种中碳钒微合金钢在变形温度900~1 100℃、应变速率0.01~10 s-1条件下的热变形行为进行研究.分别建立了实验钢的幂律、指数和双曲正弦本构方程,观察了实验钢在不同变形条件下的显微组织,得出了实验钢的动态再结晶稳态晶粒尺寸和峰值应变与Zener-Hollomon参数的关系.结果表明:双曲正弦本构方程具有最高的拟合精度;实验钢热变形激活能Q为273.225 kJ/mol,与奥氏体的自扩散激活能(270 kJ/mol)十分接近,说明实验钢在此变形条件下的速率控制机制是扩散控制的位错攀移;显微组织观察表明,实验钢的动态再结晶行为受变形温度和应变速率的影响;拟合得出实验钢的动态再结晶稳态晶粒尺寸(Ds)和峰值应变与Z参数的关系为ln Ds=-0.200 31ln Z+7.941 65和lnεp=0.184 56ln Z-5.373 83. 相似文献
10.
11.
目的研究Moenl400合金的热变形流变行为,确定合金热压缩变形的流变应力本构方程。方法在Gleeble1500热模拟机上对Ni-Cu固溶体单相合金Monel400进行等温热压缩实验,研究Monel400合金在变形温度为1173~1423 K、应变速率为0.01~10 s~(-1)时的流变应力;Monel400合金的本构模型为含有ZenerHollomon参数的双曲正弦函数模型,通过回归分析获得了材料常数Q,ln A,n,α与真应变ε的关系;并对不同变形条件下的实测值与计算值进行对比。结果 Moenl400合金的流变应力随温度的升高和应变速率的降低而降低;Moenl400合金流变应力的计算值与实验值吻合较好。结论通过计算得到的本构模型能够较好地表征Monel400合金的高温流变特性。 相似文献
12.
采用Gleeble-1500热模拟试验机对TC20合金进行等温热模拟压缩实验。分析该合金在变形温度为750~900℃,应变速率为0.001~1.0s-1条件下的变形行为及流变应力的变化规律。分析不同变形温度和变形速率下的热变形行为及其微观组织的演变规律,观察结果表明:流变应力和微观组织受变形温度和应变速率显著影响;流变应力随变形温度的升高和应变速率的降低而降低,流变应力在经历加工硬化的上升阶段后达到硬化和软化相平衡的稳定阶段。采用双曲正弦模型确定该合金的变形应力指数n和变形激活能Q分别为4.43和340.908kJ/mol,建立了相应的热变形本构方程为:ε=2.706×1016[sinh(0.0091σ)]5.72exp[-340908/(RT)]。 相似文献
13.
对采用喷射沉积制备的Al-Fe-V-Si耐热铝合金,在Gleeble-1500热模拟机上于350~480℃、应变速率0.05s-1、0.014 s-1、0.0014 s-1条件下进行高温压缩热模拟实验研究.结果表明,流变应力随变形温度的升高而降低,随应变速率的提高而增加,且均随变形程度的增加呈现出达到峰值后逐渐下降的趋势.在实验的基础上分析了变形激活能与变形温度、应变速率以及应力指数和流变应力之间的关系,最后回归出了包含激活能Q和温度T的双曲正弦形式的本构方程,为合理制定Al-Fe-V-Si耐热铝合金的热挤压工艺提供了理论和实验依据. 相似文献
14.
15.
目的基于实测的流动应力曲线,构建可用于热成形模拟的34Cr2Ni2Mo合金结构钢高精度本构方程。方法采用热模拟试验测试该材料的流动应力曲线,在动态再结晶的条件下,构建了基于物理机制的热本构方程,通过曲线拟合获得了本构方程参数。结果热模拟试验测试的流动应力曲线具有明显的动态再结晶现象,构建的本构方程包括流动应力、屈服/饱和/临界/稳态应力、发生50%再结晶的时间等内变量计算方程,在参数拟合后对其误差分析表明,本构方程计算的流动应力偏差控制在±15 MPa以内。结论 34Cr2Ni2Mo合金结构钢本构方程能够较为准确的描述该钢在热成形过程的流动应力变化特征,具有较强的数值稳定性和外延拓展性。 相似文献
16.
采用Gleeble-1500热模拟试验机和透射电子显微镜研究了变形温度为300~900℃,应变速率为0.01~10s-1条件下Al_2O_3/Cu复合材料的高温流变行为和组织演变规律,并利用Arrhenius关系和Zener-Hollomn参数构建了合金的峰值屈服应力、变形温度和应变速率三者之间的本构方程。结果表明:Al_2O_3/Cu复合材料的流变应力-应变曲线为典型的动态再结晶类型,其曲线由加工硬化、动态软化和稳定流变3个阶段组成,当变形温度一定时,流变应力随应变速率的增大而增大,而当应变速率固定时,流变应力随变形温度的升高而减小;求解得到复合材料的结构因子lnA为15.2391,应力水平参数a为0.020788mm~2/N,应力指数n为5.933035,变形激活能Q为2.1697×10~5kJ/mol;随着变形温度的升高,基体内位错密度逐渐下降,并呈现出明显的再结晶特征,而当固定变形温度时,随着应变速率的增大,基体内位错密度呈先增大后下降趋势。基于微观组织演变和热加工图,Al_2O_3/Cu复合材料的最佳热加工参数范围为热加工温度500~850℃、应变速率低于0.1s-1。 相似文献
17.
18.
目的 研究GH5188合金板材高温拉伸变形流动行为,为高温合金板材高温成形工艺的制定和优化提供指导。方法 基于GH5188合金板材高温拉伸试验,分析了变形工艺参数对GH5188合金板材高温拉伸变形时真应力、应变速率敏感性指数和应变硬化指数的影响规律,建立了本构模型对其流动行为进行描述和预测。结果 GH5188合金板材高温拉伸变形流动行为受应变硬化、流动软化和应变速率硬化的共同影响,其变形过程分为弹性变形、加工硬化、稳态流动和断裂4个阶段。随变形温度的升高和应变速率的降低,真应力减小。变形温度、应变速率和真应变对GH5188合金板材的应变速率敏感性指数和应变硬化指数具有显著影响。基于Johnson-Cook和Hensel-Spittel模型,建立了考虑应变硬化效应、流动软化效应和应变速率硬化效应耦合影响的GH5188合金板材高温拉伸变形本构模型(JC-HS模型),采用该模型预测的真应力与试验值的平均相对误差为6.02%。结论 建立的JC-HS模型能够较好地描述和预测GH5188合金板材的高温拉伸流动行为。 相似文献
19.
使用Gleeble-3800热模拟试验机对TA5钛合金进行等温恒应变速率压缩,研究其在变形温度为850~1050℃、应变速率为0.001~10 s-1和最大变形量为60%条件下的高温热变形行为;建立了引入物理参量的应变补偿本构模型,并根据DMM模型得到了加工图。结果表明:TA5钛合金为正应变速率敏感性和负变形温度相关性材料;考虑物理参量的应变补偿本构模型具有较高的预测精度,其相关系数R为0.99,平均相对误差AARE为8.95%。分析加工图和观察微观组织,发现失稳区域(850~990℃,0.05~10 s-1)的主要变形机制为局部流动;稳定区域(870~990℃,0.005~0.05 s-1)的主要变形机制为动态回复和动态再结晶。TA5钛合金的最佳热加工工艺参数范围为870~990℃和0.005~0.05 s-1。 相似文献
20.
利用Gleeble-3500热模拟试验机对Mg-9Al-3Si-0.375Sr-0.78Y合金试样进行等温恒应变速率压缩实验,研究其在温度250~400℃、应变速率0.001~10s~(-1)条件下的热变形行为。结果表明:在热变形过程中,峰值应力随着应变速率的降低和温度的升高而减小,且峰值应力对应变速率的敏感性随着变形温度的下降而增强。建立了考虑应变的热变形Arrhenius本构模型,模型精度良好,在300,350℃及0.001~10s~(-1)范围内,模型的平均绝对误差分别为1.57%和1.76%;合金的平均变形激活能为183.58k J/mol,平均应变速率敏感指数为0.1616。热变形过程中,α-Mg相呈现明显的动态再结晶特征,β-Mg17Al12相尺寸减小且分布均匀,初生Mg_2Si相较小。在低温(250~300℃)变形时,动态再结晶仅发生在晶界处。在高温(350~400℃)变形时,初生α-Mg晶粒发生了明显的动态再结晶。随着温度的增加和应变速率的降低,再结晶程度提高,再结晶晶粒逐渐长大。 相似文献