首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adoption of graphene in electronics, optoelectronics, and photonics is hindered by the difficulty in obtaining high‐quality material on technologically relevant substrates, over wafer‐scale sizes, and with metal contamination levels compatible with industrial requirements. To date, the direct growth of graphene on insulating substrates has proved to be challenging, usually requiring metal‐catalysts or yielding defective graphene. In this work, a metal‐free approach implemented in commercially available reactors to obtain high‐quality monolayer graphene on c‐plane sapphire substrates via chemical vapor deposition is demonstrated. Low energy electron diffraction, low energy electron microscopy, and scanning tunneling microscopy measurements identify the Al‐rich reconstruction 31 × 31 R ± 9 ° of sapphire to be crucial for obtaining epitaxial graphene. Raman spectroscopy and electrical transport measurements reveal high‐quality graphene with mobilities consistently above 2000 cm2 V?1 s?1. The process is scaled up to 4 and 6 in. wafers sizes and metal contamination levels are retrieved to be within the limits for back‐end‐of‐line integration. The growth process introduced here establishes a method for the synthesis of wafer‐scale graphene films on a technologically viable basis.  相似文献   

2.
The low ionic conductivity and Li+ transference number ( t L i + ${t}_{L{i}^ + }$ ) of solid polymer electrolytes (SPEs) seriously hinder their application in lithium-ion batteries (LIBs). In this study, a novel single-ion lithium-rich imidazole anionic porous aromatic framework (PAF-220-Li) is designed. The abundant pores in PAF-220-Li are conducive to the Li+ transfer. Imidazole anion has low binding force with Li+. The conjugation of imidazole and benzene ring can further reduce the binding energy between Li+ and anions. Thus, only Li+ moved freely in the SPEs, remarkably reducing the concentration polarization and inhibiting lithium dendrite growth. PAF-220-quasi-solid polymer electrolyte (PAF-220-QSPE) is prepared through solution casting of Bis(trifluoromethane)sulfonimide lithium (LiTFSI) infused PAF-220-Li and Poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP), and possessed excellent electrochemical performance. The electrochemical property are further improved by preparing all-solid polymer electrolyte (PAF-220-ASPE) via pressing-disc method, which has a high Li+ conductivity of 0.501 mS cm−1 and t L i + ${t}_{L{i}^ + }$ of 0.93. The discharge specific capacity at 0.2 C of Li//PAF-220-ASPE//LFP reached 164 mAh g−1, and the capacity retention rate is 90% after 180 cycles. This study provided a promising strategy for SPE with single-ion PAFs to achieve high-performance solid-state LIBs.  相似文献   

3.
4.
2D magnets can potentially revolutionize information technology, but their potential application to cooling technology and magnetocaloric effect (MCE) in a material down to the monolayer limit remain unexplored. Herein, it is revealed through multiscale calculations the existence of giant MCE and its strain tunability in monolayer magnets such as CrX3 (X = F, Cl, Br, I), CrAX (A = O, S, Se; X = F, Cl, Br, I), and Fe3GeTe2. The maximum adiabatic temperature change ( Δ T ad max $\Delta T_{{\rm{ad}}}^{\max }$ ), maximum isothermal magnetic entropy change, and specific cooling power in monolayer CrF3 are found as high as 11 K, 35 µJ m−2 K−1, and 3.5 nW cm−2 under a magnetic field of 5 T, respectively. A 2% biaxial and 5% a-axis uniaxial compressive strain can remarkably increase Δ T ad max $\Delta T_{{\rm{ad}}}^{\max }$ of CrCl3 and CrOF by 230% and 37% (up to 15.3 and 6.0 K), respectively. It is found that large net magnetic moment per unit area favors improved MCE. These findings advocate the giant-MCE monolayer magnets, opening new opportunities for magnetic cooling at nanoscale.  相似文献   

5.
Platinum-rare earth metal (Pt-RE) nanoalloys are regarded as a potential high performance oxygen reduction reaction (ORR) catalyst. However, wet chemical synthesis of the nanoalloys is a crucial challenge because of the extremely high oxygen affinity of RE elements and the significantly different standard reduction potentials between Pt and RE. Here, this paper presents a molten-salt electrochemical synthetic strategy for the compositional-controlled preparation of platinum-neodymium (Pt-Nd) nanoalloy catalysts. Carbon-supported platinum-neodymium (PtxNd/C) nanoalloys, with distinct compositions of Pt5Nd and Pt2Nd, are obtained through molten-salt electrochemical deoxidation of platinum and neodymium oxide (Pt-Nd2O3) precursors supported on carbon. The PtxNd/C nanoalloys, especially the Pt5Nd/C exhibit a mass activity of 0.40 A mg−1Pt and a specific activity of 1.41 mA cm−2Pt at 0.9 V versus RHE, which are 3.1 and 7.1 times higher, respectively, than that of commercial Pt/C catalyst. More significantly, the Pt5Nd/C catalyst is remarkably stable after undergoing 20 000 accelerated durability cycles. Furthermore, the density-functional-theory (DFT) calculations confirm that the ORR catalytic performance of PtxNd/C nanoalloys is enhanced by compressive strain effect of Pt overlayer, causing a suitable weakened binding energies of O* Δ E O $\Delta {E}_{{{\rm{O}}}^*}$ and Δ E OH $\Delta {E}_{{\rm{OH}}^*}$ .  相似文献   

6.
Pt-based supported materials, a widely used electrocatalyst for hydrogen evolution reaction (HER), often experience unavoidable electron loss, resulting in a mismatching of electronic structure and HER behavior. Here, a Pt/WO3 catalyst consisting of Pt species strongly coupled with defective WO3 polycrystalline nanorods is rationally designed. The electronic structure engineering of Pt sites on WO3 can be systematically regulated, and so that the optimal electron-rich Pt sites on Pt/WO3-600 present an excellent HER activity with only 8 mV overpotential at 10 mA cm−2. Particularly, the mass activity reaches 7015 mA mg−1 at the overpotential of 50 mV, up to 26-fold higher than that of the commercial Pt/C. The combination of experimental and theoretical results demonstrates that the O vacancies of WO3 effectively mitigate the tendency of electron transfer from Pt sites to WO3, so that the d-band center could reach an appropriate level relative to Fermi level, endowing it with a suitable Δ G H $\Delta {G_{{{\rm{H}}^ * }}}$ . This work identifies the influence of the electronic structure on catalytic activity.  相似文献   

7.
The successful self-assembly of tensegrity triangle DNA crystals heralded the ability to programmably construct macroscopic crystalline nanomaterials from rationally-designed, nanoscale components. This 3D DNA tile owes its “tensegrity” nature to its three rotationally stacked double helices locked together by the tensile winding of a center strand segmented into 7 base pair (bp) inter-junction regions, corresponding to two-thirds of a helical turn of DNA. All reported tensegrity triangles to date have employed ( Z + 2 / 3 ) \[\left( {Z{\bm{ + }}2{\bf /}3} \right)\] turn inter-junction segments, yielding right-handed, antiparallel, “J1” junctions. Here a minimal DNA triangle motif consisting of 3-bp inter-junction segments, or one-third of a helical turn is reported. It is found that the minimal motif exhibits a reversed morphology with a left-handed tertiary structure mediated by a locally-parallel Holliday junction—the “L1” junction. This parallel junction yields a predicted helical groove matching pattern that breaks the pseudosymmetry between tile faces, and the junction morphology further suggests a folding mechanism. A Rule of Thirds by which supramolecular chirality can be programmed through inter-junction DNA segment length is identified. These results underscore the role that global topological forces play in determining local DNA architecture and ultimately point to an under-explored class of self-assembling, chiral nanomaterials for topological processes in biological systems.  相似文献   

8.
The sluggish kinetics of the methanol oxidation reaction (MOR) with PtRu electrocatalyst severely hinder the commercialization of direct methanol fuel cells (DMFCs). The electronic structure of Pt is of significant importance for its catalytic activity. Herein, it is reported that low-cost fluorescent carbon dots (CDs) can regulate the behavior of the D-band center of Pt in PtRu clusters through resonance energy transfer (RET), resulting in a significant increase in the catalytic activity of the catalyst participating in methanol electrooxidation. For the first time, the bifunction of RET is used to provide unique strategy for fabrication of PtRu electrocatalysts, not only tunes the electronic structure of metals, but also provides an important role in anchoring metal clusters. Density functional theory calculations further prove that charge transfer between CDs and Pt promotes the dehydrogenation of methanol on PtRu catalysts and reduces the free energy barrier of the reaction associated with the oxidation of CO* to CO2. This helps to improve the catalytic activity of the systems participating in MOR. The performance of the best sample is 2.76 times higher than that of commercial PtRu/C (213.0 vs 76.99  mW cm 2 mg Pt 1 ${\rm{mW\ cm}}^{ - 2}{\rm{\ mg}}_{{\rm{Pt}}}^{ - 1}$ ). The fabricated system can be potentially used for the efficient fabrication of DMFCs.  相似文献   

9.
Preparation of holey, single-crystal, 2D nanomaterials containing in-plane nanosized pores is very appealing for the environment and energy-related applications. Herein, an in situ topological transformation is showcased of 2D layered double hydroxides (LDHs) allows scalable synthesis of holey, single-crystal 2D transition metal oxides (TMOs) nanomesh of ultrathin thickness. As-synthesized 2D Co/NiO-2 nanomesh delivers superior photocatalytic CO2-syngas conversion efficiency (i.e., VCO of 32460 µmol h−1 g−1 CO and V H 2 ${V_{{{\rm{H}}_2}}}$ of 17840 µmol h−1 g−1 H2), with VCO about 7.08 and 2.53 times that of NiO and 2D Co/NiO-1 nanomesh containing larger pore size, respectively. As revealed in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), the high performance of Co/NiO-2 nanomesh primarily originates from the edge sites of nanopores, which carry more defect structures (e.g., atomic steps or vacancies) than basal plane for CO2 adsorption, and from its single-crystal structure adept at charge transport. Theoretical calculation shows the topological transformation from 2D hydroxide to holey 2D oxide can be achieved, probably since the trace Co dopant induces a lattice distortion and thus a sharp decrease of the dehydration energy of hydroxide precursor. The findings can advance the design of intriguing holey 2D materials with well-defined geometric and electronic properties.  相似文献   

10.
Li‐ion capacitors (LICs) have demonstrated great potential for bridging the gap between lithium‐ion batteries and supercapacitors in electrochemical energy storage area. The main challenge for current LICs (contain a battery‐type anode as well as a capacitor‐type cathode) lies in circumventing the mismatched electrode kinetics and cycle degradation. Herein, a mesh‐like nitrogen (N)‐doped carbon nanosheets with multiscale pore structure is adopted as both cathode and anode for a dual‐carbon type of symmetric LICs to alleviate the above mentioned problems via a facile and green synthesis approach. With rational design, this dual‐carbon LICs exhibits a broad high working voltage window (0–4.5 V), an ultrahigh energy density of 218.4 Wh kg 1 electrodes ( 229.8 Wh L 1 electrodes ), the highest power density of 22.5 kW kg 1 electrodes ( 23.7 kW L 1 electrodes ) even under an ultrahigh energy density of 97.5 Wh kg 1 electrodes ( 102.6 Wh L 1 electrodes ), as well as reasonably good cycling stability with capacity retention of 84.5% (only 0.0016% capacity loss per cycle) within 10 000 cycles under a high current density of 5 A g?1. This study provides an efficient method and option for the development of high performance LIC devices.  相似文献   

11.
Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long-term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co-solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g−1 and an excellent energy density of 730 Wh kg−1 at 0.1 Ag−1. In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag−1. Moreover, the cathode charge–discharge mechanism studies demonstrate a multi-step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2− ( S 8 S x 2 S 2 2 + S 2 ) ${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}}})$ , forming ZnS. On charging, the ZnS and short-chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi-step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future.  相似文献   

12.
Special surface plays a crucial role in nature as well as in industry. Here, the surface morphology evolution of ZnO during wet etching is studied by in situ liquid cell transmission electron microscopy and ex situ wet chemical etching. Many hillocks are observed on the (000 1 ¯ ) O‐terminated surface of ZnO nano/micro belts during in situ etching. Nanoparticles on the apex of the hillocks are observed to be essential for the formation of the hillocks, providing direct experimental evidence of the micromasking mechanism. The surfaces of the hillocks are identified to be {01 1 ¯ 3 ¯ } crystal facets, which is different from the known fact that {01 1 ¯ 1 ¯ } crystal facets appear on the (000 1 ¯ ) O‐terminated surface of ZnO after wet chemical etching. O2 plasma treatment is found to be the key factor for the appearance of {01 1 ¯ 3 ¯ } instead of {01 1 ¯ 1 ¯ } crystal facets after etching for both ZnO nano/micro belts and bulk materials. The synergistic effect of acidic etching and O‐rich surface caused by O2 plasma treatment is proposed to be the cause of the appearance of {01 1 ¯ 3 ¯ } crystal facets. This method can be extended to control the surface morphology of other materials during wet chemical etching.  相似文献   

13.
Transition metal fluorides (MFx) offer remarkably high theoretical energy density. However, the low cycling stability, low electrical and ionic conductivity of metal fluorides have severely limited their applications as conversion‐type cathode materials for lithium ion batteries. Here, a scalable and low‐cost strategy is reported on the fabrication of multifunctional cobalt fluoride/carbon nanotube nonwoven fabric nanocomposite, which demonstrates a combination of high capacity (near‐theoretical, ) and excellent mechanical properties. Its strength and modulus of toughness exceed that of many aluminum alloys, cast iron, and other structural materials, fulfilling the use of MFx‐based materials in batteries with load‐bearing capabilities. In the course of this study, cathode dissolution in conventional electrolytes has been discovered as the main reason that leads to the rapid growth of the solid electrolyte interphase layer and attributes to rapid cell degradation. And such largely overlooked degradation mechanism is overcome by utilizing electrolyte comprising a fluorinated solvent, which forms a protective ionically conductive layer on the cathode and anode surfaces. With this approach, 93% capacity retention is achieved after 200 cycles at the current density of 100 mA g−1 and over 50% after 10 000 cycles at the current density of 1000 mA g−1.  相似文献   

14.
In this study, the competition mechanisms between dislocation slip and twinning in silver with a low stacking fault energy using molecular dynamics (MD) simulation from an atomistic point of view are reported. Herein, three crystallographic surface orientations of ( 001 ) $\left(\right. 001 \left.\right)$ , ( 011 ) $\left(\right. 011 \left.\right)$ , and ( 111 ) $\left(\right. 111 \left.\right)$ are considered and compared. The indentation stress–strain curves are successfully obtained from the load–displacement curves of nanoindentation. The stress of ( 001 ) $\left(\right. 001 \left.\right)$ , ( 011 ) $\left(\right. 011 \left.\right)$ , and ( 111 ) $\left(\right. 111 \left.\right)$ orientations drops at the strains of 0.140, 0.133, and 0.136, which corresponds to the yield stress of 3.83, 4.33, and 4.99 GPa, respectively. Dislocation slip and twinning simultaneously form in silver as indicated by the total potential energy of the system. Furthermore, the typical four-, two-, and sixfold symmetries of the out-of-plane displacement as in copper are not observed for ( 001 ) $\left(\right. 001 \left.\right)$ , ( 011 ) $\left(\right. 011 \left.\right)$ , and ( 111 ) $\left(\right. 111 \left.\right)$ orientations in silver. Hence, this observation can be supported by the simultaneous occurrence of dislocation slip and twinning in silver.  相似文献   

15.
Triply periodic minimal surface lattices have mechanical properties that derive from the unit cell geometry and the base material. Through computation software like nTopology and Abaqus, these geometries are used to tune nonlinear stress–strain curves not readily achievable with solid materials alone and to change the compliance by two orders of magnitude compared to the constituent material. In this study, four elastomeric TPMS gyroids undergo large deformation compression and tension testing to investigate the impact of the structure's geometry on the mechanical properties. Among all the samples, the modulus at strain ε = 0.05 $\epsilon = 0.05$ varies by over one order of magnitude (7.7–293.4 kPa from FEA under compression). These lattices are promising candidates for designing multifunctional systems that can perform multiple tasks simultaneously by leveraging the geometry's large surface area to volume ratio. For example, the architectural functionality of the lattice to bear loads and store mechanical energy along with the larger surface area for energy storage is combined. A compliant double-gyroid capacitor that can simultaneously achieve three functions is demonstrated: load bearing, energy storage, and sensing.  相似文献   

16.
The fracture assessment of notched components based on cracked components approaches leads to over‐conservative failure predictions. In the research literature, several approaches are proposed to overcome this problem using an apparent fracture toughness, . Nevertheless, most of these approaches are based on deterministic assumptions despite the large and variable scatter exhibited by for different notch radii (ρ) or temperatures (T). This paper proposes a methodology for deriving a probabilistic field including the effect of temperature on the failure of notched components. First, the theory of critical distances is applied to transform each apparent fracture toughness into the equivalent fracture toughness for ρ = 0. Then, the temperature is supposed to act as a scale effect in the Weibull cumulative distribution function of the equivalent fracture toughness, and the corresponding scale effect function is derived. Finally, the applicability of the proposed methodology is illustrated by an example using two ferritic‐pearlitic steels: S275JR and S355J2.  相似文献   

17.
Collaborative robotic systems will be a key enabling technology for current and future industrial applications. The main aspect of such applications is to guarantee safety for humans. To detect hazardous situations, current commercially available robotic systems rely on direct physical contact to the co-working person. To further advance this technology, there are multiple efforts to develop predictive capabilities for such systems. Using motion tracking sensors and pose estimation systems combined with adequate predictive models, potential episodes of hazardous collisions between humans and robots can be predicted. Based on the provided predictive information, the robotic system can avoid physical contact by adjusting speed or position. A potential approach for such systems is to perform human motion prediction with machine learning methods like artificial neural networks (NNs). In our approach, the motion patterns of past seconds are used to predict future ones by applying a linear Tensor-on-Tensor Regression model, selected according to a similarity measure between motion sequences obtained by dynamic time warping (DTW). For test and validation of our proposed approach, industrial pseudo assembly tasks were recorded with a motion capture system, providing unique traceable Cartesian coordinates ( x , y , z ) $(x, y, z)$ for each human joint. The prediction of repetitive human motions associated with assembly tasks, whose data vary significantly in length and have highly correlated variables, has been achieved in real time.  相似文献   

18.
The Zn2+ stored in the secretory vesicles of glutamatergic neurons is coreleased with glutamate upon stimulation, resulting in the elevation of extracellular Zn2+ concentration (). This elevation of regulates the neurotransmission and facilitates the fibrilization of amyloid‐β (Aβ). However, the exact surrounding neurons under (patho)physiological conditions is not clear and the connection between and the Aβ fibrilization remains obscure. Here, a silicon nanowire field‐effect transistor (SiNW‐FET) with the Zn2+‐sensitive fluorophore, FluoZin‐3 (FZ‐3), to quantify the in real time is modified. This FZ‐3/SiNW‐FET device has a dissociation constant of ≈12 × 10?9m against Zn2+. By placing a coverslip seeded with cultured embryonic cortical neurons atop an FZ‐3/SiNW‐FET, the elevated to ≈110 × 10?9m upon stimulation with α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA). Blockers against the AMPA receptor or exocytosis greatly suppress this elevation, indicating that the Zn2+ stored in the synaptic vesicles is the major source responsible for this elevation of . In addition, a SiNW‐FET modified with Aβ could bind Zn2+ with a dissociation constant of ≈633 × 10?9m and respond to the Zn2+ released from AMPA‐stimulated neurons. Therefore, the can reach a level high enough to bind Aβ and the Zn2+ homeostasis can be a therapeutic strategy to prevent neurodegeneration.  相似文献   

19.
Based on standard stiffness (compliance) and stress designs in structural topology optimization (TO), this work proposes a simple strategy to tailor fracture properties of brittle architected materials. Material distribution in the design domain is customized through a stress-constrained strain-energy maximization TO framework. Structures consisting of a single $$ - $$phase brittle material are studied. Mechanical fracture properties of the optimized structure including stiffness, toughness, strength, and failure displacement are thereafter quantified via the phase field modeling. Reported results show that the obtained architecture can achieve 6 times tougher and more than 1.5 times stronger compared with the stiffness-only TO result. Against to stress-only optimization, all concerned mechanical properties including stiffness, toughness, and strength can be improved by more than 15% simultaneously.  相似文献   

20.
This study uses graphene oxide quantum dots (GOQDs) to enhance the Li+‐ion mobility of a gel polymer electrolyte (GPE) for lithium‐ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile‐co‐vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3?11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion?solvent clusters and immobilize anions, affording the GPE a high ionic conductivity and a high Li+‐ion transference number (0.77). When assembled into Li|electrolyte|LiFePO4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge?discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion?solvent clusters and degree of Li+‐ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li‐metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion?solvent coordination in GPEs and thus improve the performance and lifespan of LIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号