首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene encapsulating paraffin (paraffin@graphene) microcapsules were fabricated by electrostatic interaction-based self-assembly. An aqueous dispersion of graphene sheets charged with cation, were mixed with a water-based emulsion containning negatively charged paraffin droplet spheres to form self-assembled microcapsules. The morphology of the microcapsules was characterized by scanning electron microscope (SEM). Results show that the microcapsules with a well-defined spherical structure were prepared successfully. Differential scanning calorimeter (DSC) results indicate that the phase change latent heat are all above 200?J g?1. With a graphene mass fraction of 8?wt%, the thermal conductivity of the fabricated composites can reach 1.73?W m?1 K?1. Attributing to the interlocking of graphene with each other, the microcapsules enable lock the paraffin in the shell thus successfully avoiding its leakage during phase change process. The prepared phase change microcapsules are expected to apply in energy storage field.  相似文献   

2.
Superparamagnetic iron oxide nanoparticles have been used for many years as magnetic resonance imaging (MRI) contrast agents or in drug delivery applications. In this study, a novel approach to prepare magnetic polymeric nanoparticles with magnetic core and polymeric shell using inverse microemulsion polymerization process is reported. Poly(ethyleneglycol) (PEG)-modified superparamagnetic iron oxide nanoparticles with specific shape and size have been prepared inside the aqueous cores of AOT/n-Hexane reverse micelles and characterized by various physicochemical means such as transmission electron microscopy (TEM), infrared spectroscopy, atomic force microscopy (AFM), vibrating sample magnetometry (VSM), and ultraviolet/visible spectroscopy. The inverse microemulsion polymerization of a polymerizable derivative of PEG and a cross-linking agent resulted in a stable hydrophilic polymeric shell of the nanoparticles. The results taken together from TEM and AFM studies showed that the particles are spherical in shape with core-shell structure. The average size of the PEG-modified nanoparticles was found to be around 40-50 nm with narrow size distribution. The magnetic measurement studies revealed the superparamagnetic behavior of the nanoparticles with saturation magnetization values between 45-50 electromagnetic units per gram. The cytotoxicity profile of the nanoparticles on human dermal fibroblasts as measured by standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the particles are nontoxic and may be useful for various in vivo and in vitro biomedical applications.  相似文献   

3.
Prevention of undesired leakage of encapsulated materials prior to triggered release presents a technological challenge for the practical application of microcapsule technologies in agriculture, drug delivery, and cosmetics. A microfluidic approach is reported to fabricate perfluoropolyether (PFPE)‐based microcapsules with a high core‐shell ratio that show enhanced retention of encapsulated actives. For the PFPE capsules, less than 2% leakage of encapsulated model compounds, including Allura Red and CaCl2, over a four week trial period is observed. In addition, PFPE capsules allow cargo diversity by the fabrication of capsules with either a water‐in‐oil emulsion or an organic solvent as core. Capsules with a toluene‐based core begin a sustained release of hydrophobic model encapsulants immediately upon immersion in an organic continuous phase. The major contribution on the release kinetics stems from the toluene in the core. Furthermore, degradable silica particles are incorporated to confer porosity and functionality to the otherwise chemically inert PFPE‐based polymer shell. These results demonstrate the capability of PFPE capsules with large core–shell ratios to retain diverse sets of cargo for extended periods and make them valuable for controlled release applications that require a low residual footprint of the shell material.  相似文献   

4.
随着火炮初速、膛压、射速的提高, 炮膛的烧蚀磨损逐渐变得严重, 对高效缓蚀剂的需求越来越迫切。本研究以聚乙烯醇(PVA)为壁材, 在W/O/W复乳体系中利用界面交联法制备了TiO2前驱体微胶囊, 探讨了微胶囊的形成机理。扫描电镜观察表明微胶囊呈现出球形形貌, 分散性好, 囊壁致密、包覆完整, 粒径分析显示其平均粒径在10 μm左右; 红外分析进一步证实微胶囊是由醇醛树脂层包覆TiO2前驱体形成; 热分析表明微胶囊中固体TiO2含量约为35%。利用烧蚀管试验法测试其降烧蚀性能, 结果表明TiO2前驱体微胶囊型缓蚀剂不影响发射药的燃烧规律, 在相对于发射药质量2.5wt%的添加量下, 降烧蚀效率达到35%左右。  相似文献   

5.
Inhomogeneous microcapsules that can encapsulate various cargo for controlled release triggered by osmotic shock are designed and reported. The microcapsules are fabricated using a microfluidic approach and the inhomogeneity of shell thickness in the microcapsules can be controlled by tuning the flow rate ratio of the middle phase to the inner phase. This study demonstrates the swelling of these inhomogeneous microcapsules begins at the thinnest part of shell and eventually leads to rupture at the weak spot with a low osmotic pressure. Systematic studies indicate the rupture fraction of these microcapsules increases with increasing inhomogeneity, while the rupture osmotic pressure decreases linearly with increasing inhomogeneity. The inhomogeneous microcapsules are demonstrated to be impermeable to small probe molecules, which enables long‐term storage. Thus, these microcapsules can be used for long‐term storage of enzymes, which can be controllably released through osmotic shock without impairing their biological activity. The study provides a new approach to design effective carriers to encapsulate biomolecules and release them on‐demand upon applying osmotic shock.  相似文献   

6.
PBA/PMMA型核壳结构增韧剂的合成及表征   总被引:2,自引:0,他引:2  
采用传统乳液聚合、无皂乳液聚合及其扩径聚合的方法,得到了粒径从0.078um至1.38um的窄分布的BA(丙烯酸丁酯)为主单体的PBA橡胶核,然后,进行PMMA的壳层种子接枝乳液聚合,得到PBA/PMMA核壳结构胶乳,乳液经破乳过滤干燥后得到核壳结构增韧剂,发现随着橡胶相交联剂用量的增加,PBA胶粒表现双键含量增加;核壳复合粒子表观羧基的含量可以用电位滴定法获得。实验表明,进行壳层混合单体(MMA、MAA)接枝时羧基主要分布在胶粒的浅层;核壳比对复合粒子的形态有较大影响。利用LS激光粒径仪测得胶粒的大小及其分布;同时,TEM照片显示了核壳粒子的形态和尺寸。  相似文献   

7.
在阐述了尿素与甲醛聚合制备微胶囊壁材反应原理的基础上,以尿素与甲醛为壁材原料,运用原位聚合法研究了包覆α-烯烃减阻聚合物微胶囊的制备工艺,利用粒度分析仪、红外光谱仪、同步热分析仪和模拟环道油品减阻率评价系统等,对微胶囊制备、储存稳定和溶解性能进行了研究。结果表明:在酸性条件下,以尿素与甲醛为微胶囊化原料,采用原位聚合法制备包覆石油减阻聚合物颗粒的微胶囊,制备工艺具有反应温和、缩聚反应可控,可有效缩短反应时间等特点。制备的脲醛树脂包覆α-烯烃减阻聚合物微胶囊粒度分布主要集中在200μm处,微胶囊可长期保持较好的圆润小球状态,具有良好的热力学稳定性。静压耐压储存稳定性和热力学稳定性研究结果表明,微胶囊可完全满足储存稳定性的要求。脲醛树脂包覆α-烯烃减阻聚合物微胶囊在输送油品中具有优良的溶解性,与未包覆的减阻聚合物颗粒减阻率接近,微胶囊溶解后减阻率较未包覆时略有延迟,但减阻率峰值依然与未包覆时相当,可满足现场工程实际应用。  相似文献   

8.
Well-defined microcapsules with polyamide–polyurea as a hybrid shell have been described for biomedical applications. Interfacial polymerization method with surfactant and cosurfactant was developed for the preparation of the hybrid microcapsules. After reaction, centrifugation, and freeze drying processes, the polyamide–polyurea hybrid microcapsules with porous membranes were successfully fabricated. Compared with previous researches of the single polyamide or polyurea microcapsules, experimental data showed that the hybrid microcapsules have a thicker shell and excellent mechanical property. Various diameters and morphologies for the hybrid microcapsules can be obtained by changing the stirring rate, drying method, and surfactant content.  相似文献   

9.
We present a new approach for the fabrication of thermoresponsive polymer microcapsules with mobile magnetic cores that undergo a volume phase-transition upon changing the temperature and are collected under an external magnetic field. We have prepared organic/inorganic composite microspheres with a well-defined core-shell structure that are composed of a crosslinked poly(N-isopropylacrylamide) (PNIPAM) shell and silica cores dotted centrally by magnetite nanoparticles. Since the infiltration of template-decomposed products is dependent on the permeability of PNIPAM shells triggered by changes of exterior temperature, the silica layer sandwiched between the magnetic core and the PNIPAM shell was quantitatively removed to generate PNIPAM microcapsules with mobile magnetic cores by treatment with aqueous NaOH solution. For development of the desired multifunctional microcapsules, modification of the unetched silica surface interiors can be realized by treatment with a silane coupling agent containing functional groups that can easily bind to catalysts, enzymes, or labeling molecules. Herein, fluorescein isothiocyanate (FITC), which is a common organic dye, is attached to the insides of the mobile magnetic cores to give PNIPAM microcapsules with FITC-labeled magnetic cores. In this system, it can be expected that an extension of the functionalization of the cavity properties of smart polymer microcapsules is to immobilize other target molecules onto the mobile cores in order to introduce other desired functions in the hollow cage.  相似文献   

10.
How droplet microfluidics can be used to fabricate solid‐shelled microcapsules having precisely controlled release behavior is described. Glass capillary devices enable the production of monodisperse double emulsion drops, which can then be used as templates for microcapsule formation. The exquisite control afforded by microfluidics can be used to tune the compositions and geometrical characteristics of the microcapsules with exceptional precision. The use of this approach to fabricate microcapsules that only release their contents when exposed to a specific stimulus – such as a change in temperature, exposure to light, a change in the chemical environment, or an external stress – only after a prescribed time delay, and at a prescribed rate is reviewed.  相似文献   

11.
In order to improve the sensitivity of ultrasound imaging, the contrast agents, a powerful non-invasive and real-time medical imaging technique, are used. However, air or N2 or perfluorocarbon only encapsulated microbubbles which are currently used have lower efficiency and short imaging time. So the novel contrast agents with a higher efficiency are required. To achieve this objective, the strategy that we have explored involves the use of superparamagnetic iron oxide (SPIO) Fe3O4 nanoparticles multilayer emulsion microbubbles. This multilayer structure consists of three layers. The core is poly-d, l-lactide (PLA) encapsulated N2 nanobubble with the SPIO nanoparticles forming oil-in-water (W/O) layer. The outermost is water-in-oil-in-water ((W/O)/W) emulsion layer with PVA solution. Herein we describe the synthesis and characterization of ultrasound imaging microstructure with an overall diameter of around 2μm-8μm. On the one hand, the stable gas encapsulated microstructure can provide a high scattering intensity resulting in high echogenicity, On the other hand, SPIO nanoparticles have shown the potential of high-resolution sonography. So the multiple emulsion microbubbles with SPIO can have double action to enhance the ultrasound imaging. Besides, because SPIO can also serve as magnetic resonance imaging (MRI) contrast agents, such microstructure may be useful for multimodality imaging studies in ultrasound imaging and MRI.  相似文献   

12.
A new series of Pickering emulsions that can be photo-cured by interparticle photo-cross-linking reactions using small amounts of multifunctional acrylate (MA) monomers is proposed to rapidly manufacture complex-structured porous ceramic materials. In our new process, water in oil (w/o) Pickering emulsion was designed by vigorous mixing of water and polyethyleneimine partially complexed with oleic acid (PEI–OA)-stabilized SiO2/toluene suspension containing small amounts of MA and a photo-radical initiator. Ultraviolet light irradiation to this w/o Pickering emulsion induced the formation of interparticle photo-crosslinks, which resulted in successful photocuring by photo-radical polymerization of MA and the Michael addition reaction between the polymerized MA and PEI–OA on the particles in the oil phase. We further applied the newly designed photo-curable Pickering emulsion and demonstrated that SiO2 components with pores related to the dispersed aqueous phase and complexed outer structures could be shaped via silicone molding or a hybridized approach of photocuring and green machining. Because of the reduced amounts of MA used, the porous SiO2 green components could be heat-treated using rapid heating profiles without any structural collapse for dewaxing and partial sintering.  相似文献   

13.
相变微胶囊以其优异的储热性能被广泛用于建筑节能等领域,但是,由于传统相变微胶囊常以表面活性剂所稳定的乳液为模板,由单一高分子聚合物形成囊壁,导致其热稳定性和储热性能较低。本文通过在高岭石稳定的水/石蜡乳液界面处引发异佛尔酮二异氰酸酯和水发生聚合反应,成功获得了囊壁为高岭石聚脲包封客体为石蜡的相变微胶囊。结果表明:相变微胶囊形貌规整呈球形,微胶囊平均粒径为42μm并可通过调控乳液液滴大小实现尺寸调控;该微胶囊的石蜡包封率达85.3%,相变点为49.6℃,热分解温度为218℃,相变潜热高达175.7 J/g。以高岭石稳定的Pickering乳液为模板所制备的相变微胶囊具有良好的热稳定性和相变潜热,有望作为相变储热材料应用于节能领域。  相似文献   

14.
Parkinson's disease (PD) is a progressive disease of the nervous system, and is currently managed through commercial tablets that do not sufficiently enable controlled, sustained release capabilities. It is hypothesized that a drug delivery system that provides controlled and sustained release of PD drugs would afford better management of PD. Hollow microcapsules composed of poly‐l ‐lactide (PLLA) and poly (caprolactone) (PCL) are prepared through a modified double‐emulsion technique. They are loaded with three PD drugs, i.e., levodopa (LD), carbidopa (CD), and entacapone (ENT), at a ratio of 4:1:8, similar to commercial PD tablets. LD and CD are localized in both the hollow cavity and PLLA/PCL shell, while ENT is localized in the PLLA/PCL shell. Release kinetics of hydrophobic ENT is observed to be relatively slow as compared to the other hydrophilic drugs. It is further hypothesized that encapsulating ENT into PCL as a surface coating onto these microcapsules can aid in accelerating its release. Now, these spray‐coated hollow microcapsules exhibit similar release kinetics, according to Higuchi's rate, for all three drugs. The results suggest that multiple drug encapsulation of LD, CD, and ENT in gastric floating microcapsules could be further developed for in vivo evaluation for the management of PD.  相似文献   

15.
PS/P(BA-BOA)核壳乳液的研究   总被引:1,自引:0,他引:1  
以丁氧基甲基丙烯酰胺(BOA)为活性单体,采用种子乳液聚合法制备了PS/P(BA-BOA)核壳型复合乳液,用透射电子显微镜观察了乳液粒子的微观形态,探讨了聚合方式等对微观结构的影响,对乳液的稳定性以及乳液膜的力学性能进行了测试,考察了聚合方式对乳液性能的影响。  相似文献   

16.
The assembly of multifunctional nanostructures bearing G-quadruplex motifs broadens the prospects of using G-quadruplexes as therapeutic carriers. Herein, we report the synthesis and characterization of an oligodeoxyguanosine, G15-mer polymer conjugate. We demonstrate that G15-mer oligonucleotides grafted to a polymer chain preserve the ability to self-assemble into ordered structures. The G-quadruplex-polymer conjugates were assembled onto a surface via hybridization with 30-mer cytosine strands, C30-mer, using a layer-by-layer approach to form microcapsules. A mechanism for the sequential assembly of the multilayer films and microcapsules is presented. We further investigate the photophysical behavior of porphyrin TMPyP4 bound to multilayer-coated particles. This study shows that the multilayer films bear residual and functional quadruplex moieties that can be used to effectively bind therapeutic agents.  相似文献   

17.
戴霞  沈晓冬 《材料导报》2007,21(F05):361-363
研究采用了以三聚氰胺-甲醛为壁材,正十四烷为芯材原位聚合法制备微胶囊相变材料。通过SEM、DSC、Zeta激光粒度测定仪观察分析了微胶囊相变材料的表面形态、粒径分布。分析了乳液制备过程中乳化剂、系统调节剂、pH等对微胶囊工艺的影响,并对制成的微胶囊进行了血箱保温方面的实验,可以有效地在极限条件和室温下保持血液的所需温度。实验表明当系统调节剂SMA分子量为4万、非离子型OP-10为乳化剂和体系pH控制在3.5时能制得粒径分布为0.5~10μm、实际应用较理想的微胶囊相变材料。  相似文献   

18.
PBA/PS复合胶乳的合成与形态研究   总被引:1,自引:0,他引:1  
用间歇法以及间歇法-半间歇法相结合的方法合成了PAB/PS复合胶乳。TEM的研究结果,间歇法合成的复合胶乳粒子尺寸比较均匀,无明显的核-壳结构;随着乳化剂用量的降低,复合粒子的尺寸增大  相似文献   

19.
Thakar R  Chen Y  Snee PT 《Nano letters》2007,7(11):3429-3432
We have studied manganese doping of zinc selenide core/zinc sulfide shell nanocrystals (NCs) where the impurity phosphor resides primarily in the shell. We have found that a simple two-step synthesis can be used to create these nontoxic materials that display efficient energy transfer from the core to the Mn doped shell. These core/shell NCs retain ample quantum efficiency ( approximately 25%) when solubilized in water, which opens the possibility of using these materials as bioimaging agents. As recent work has shown that nanocrystals can be functionalized with organic dyes to operate as ratiometric chemical sensing agents, we have conjugated the doped NCs with an organic dye to showcase efficient F?rster resonant energy transfer from the shell-doped phosphor to the surface-bound dye. This result indicates that doped NCs can be used to develop nontoxic ratiometric sensing/biological imaging agents.  相似文献   

20.
目的为改善聚磷酸铵的阻燃性及热稳定性,降低其对纸材物理性能的影响,制备一种疏水阻燃微胶囊。方法以聚磷酸铵、季戊四醇、铜改性4A分子筛为芯材,以海藻酸钠和氯化钙为原料制备壁材,在外壳包覆SiO2微粒,并制备阻燃牛皮纸。采用极限氧指数(LOI)测试、垂直燃烧测试(VBT)、烟密度测试(SDT)、微型量热仪(MCC)和热重分析(TG)表征阻燃纸的阻燃性和热稳定性,采用场发射扫描电镜(SEM)、透射电镜(TEM)表征疏水阻燃微胶囊的微观形貌,用傅里叶变换红外光谱(FTIR)表征试样的官能团特征,并根据国标测定纸张试样的抗张强度和撕裂度。结果涂布疏水阻燃微胶囊的牛皮纸试样的极限氧指数达到了36.3%,与空白组相比,烟释放总量、热释放速率峰值和热释放总量分别降低了42.44%、52.4%、36.1%,抗张强度和撕裂度分别提高了8.2%、177.1%,疏水阻燃微胶囊的表面形貌特征、元素分析结果以及红外光谱分析结果可表明,阻燃剂被成功包覆,并且SiO2微粒成功沉积在微胶囊壁材的表面。结论疏水阻燃微胶囊能有效改善阻燃剂的阻燃性、抑烟性和热稳定性,提高了基材的力学强度,降低了微胶囊的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号