首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Photocarrier recombination remains a big barrier for the improvement of solar energy conversion efficiency. For 2D materials, construction of heterostructures represents an efficient strategy to promote photoexcited carrier separation via an internal electric field at the heterointerface. However, due to the difficulty in seeking two components with suitable crystal lattice mismatch, most of the current 2D heterostructures are vertical heterostructures and the exploration of 2D lateral heterostructures is scarce and limited. Here, lateral epitaxial heterostructures of BiOCl @ Bi2O3 at the atomic level are fabricated via sonicating-assisted etching of Cl in BiOCl. This unique lateral heterostructure expedites photoexcited charge separation and transportation through the internal electric field induced by chemical bonding at the lateral interface. As a result, the lateral BiOCl @ Bi2O3 heterostructure demonstrates superior CO2 photoreduction properties with a CO yield rate of about 30 µmol g−1 h−1 under visible light illumination. The strategy to fabricate lateral epitaxial heterostructures in this work is expected to provide inspiration for preparing other 2D lateral heterostructures used in optoelectronic devices, energy conversion, and storage fields.  相似文献   

2.
A demonstration is presented of how significant improvements in all‐2D photodetectors can be achieved by exploiting the type‐II band alignment of vertically stacked WS2/MoS2 semiconducting heterobilayers and finite density of states of graphene electrodes. The photoresponsivity of WS2/MoS2 heterobilayer devices is increased by more than an order of magnitude compared to homobilayer devices and two orders of magnitude compared to monolayer devices of WS2 and MoS2, reaching 103 A W?1 under an illumination power density of 1.7 × 102 mW cm?2. The massive improvement in performance is due to the strong Coulomb interaction between WS2 and MoS2 layers. The efficient charge transfer at the WS2/MoS2 heterointerface and long trapping time of photogenerated charges contribute to the observed large photoconductive gain of ≈3 × 104. Laterally spaced graphene electrodes with vertically stacked 2D van der Waals heterostructures are employed for making high‐performing ultrathin photodetectors.  相似文献   

3.
The 2D semiconductor monolayer transition metal dichalcogenides, WS2 and MoS2, are grown by chemical vapor deposition (CVD) and assembled by sequential transfer into vertical layered heterostructures (VLHs). Insulating hBN, also produced by CVD, is utilized to control the separation between WS2 and MoS2 by adjusting the layer number, leading to fine‐scale tuning of the interlayer interactions within the VLHs. The interlayer interactions are studied by photoluminescence (PL) spectroscopy and are demonstrated to be highly sensitive to the input excitation power. For thin hBN separators (one to two layers), the total PL emission switches from quenching to enhancement by increasing the laser power. Femtosecond broadband transient absorption measurements demonstrate that the increase in PL quantum yield results from Förster energy transfer from MoS2 to WS2. The PL signal is further enhanced at cryogenic temperatures due to the suppressed nonradiative decay channels. It is shown that (4 ± 1) layers of hBN are optimum for obtaining PL enhancement in the VLHs. Increasing thickness beyond this causes the enhancement factor to diminish, with the WS2 and MoS2 then behaving as isolated noninteracting monolayers. These results indicate how controlling the exciton generation rate influences energy transfer and plays an important role in the properties of VLHs.  相似文献   

4.
2D metal‐semiconductor heterostructures based on transition metal dichalcogenides (TMDs) are considered as intriguing building blocks for various fields, such as contact engineering and high‐frequency devices. Although, a series of p–n junctions utilizing semiconducting TMDs have been constructed hitherto, the realization of such a scheme using 2D metallic analogs has not been reported. Here, the synthesis of uniform monolayer metallic NbS2 on sapphire substrate with domain size reaching to a millimeter scale via a facile chemical vapor deposition (CVD) route is demonstrated. More importantly, the epitaxial growth of NbS2‐WS2 lateral metal‐semiconductor heterostructures via a “two‐step” CVD method is realized. Both the lateral and vertical NbS2‐WS2 heterostructures are achieved here. Transmission electron microscopy studies reveal a clear chemical modulation with distinct interfaces. Raman and photoluminescence maps confirm the precisely controlled spatial modulation of the as‐grown NbS2‐WS2 heterostructures. The existence of the NbS2‐WS2 heterostructures is further manifested by electrical transport measurements. This work broadens the horizon of the in situ synthesis of TMD‐based heterostructures and enlightens the possibility of applications based on 2D metal‐semiconductor heterostructures.  相似文献   

5.
2D semiconducting transition metal dichalcogenides (TMDs) are endowed with fascinating optical properties especially in their monolayer limit. Insulating hBN films possessing customizable thickness can act as a separation barrier to dictate the interactions between TMDs. In this work, vertical layered heterostructures (VLHs) of WS2:hBN:WS2 are fabricated utilizing chemical vapor deposition (CVD)‐grown materials, and the optical performance is evaluated through photoluminescence (PL) spectroscopy. Apart from the prohibited indirect optical transition due to the insertion of hBN spacers, the variation in the doping level of WS2 drives energy transfer to arise from the layer with lower quantum efficiency to the other layer with higher quantum efficiency, whereby the total PL yield of the heterosystem is increased and the stack exhibits a higher PL intensity compared to the sum of those in the two WS2 constituents. Such doping effects originate from the interfaces that WS2 monolayers reside on and interact with. The electron density in the WS2 is also controlled and subsequent modulation of PL in the heterostructure is demonstrated by applying back‐gated voltages. Other influential factors include the strain in WS2 and temperature. Being able to tune the energy transfer in the VLHs may expand the development of photonic applications in 2D systems.  相似文献   

6.
Patterning of high‐mobility 2D semiconducting materials with unique layered structures and superb electronic properties offers great potential for batch fabrication and integration of next‐generation electronic and optoelectronic devices. Here, a facile approach is used to achieve accurate patterning of 2D high‐mobility semiconducting Bi2O2Se crystals using dilute H2O2 and protonic mixture acid as efficient etchants. The 2D Bi2O2Se crystal after chemical etching maintains a high Hall mobility of over 200 cm2 V?1 s?1 at room temperature. Centimeter‐scale well‐ordered arrays of 2D Bi2O2Se with tailorable configurations are readily obtained. Furthermore, integrated photodetectors based on 2D Bi2O2Se arrays are fabricated, exhibiting excellent air stability and high photoresponsivity of ≈2000 A W?1 at 532 nm. These results are one step towards the practical application of ultrathin 2D integrated digital and optoelectronic circuits.  相似文献   

7.
As new 2D layered nanomaterials, Bi2O2Se nanoplates have unique semiconducting properties that can benefit biomedical applications. Herein, a facile top‐down approach for the synthesis of Bi2O2Se quantum dots (QDs) in a solution is described. The Bi2O2Se QDs with a size of 3.8 nm and thickness of 1.9 nm exhibit a high photothermal conversion coefficient of 35.7% and good photothermal stability. In vitro and in vivo assessments demonstrate that the Bi2O2Se QDs possess excellent photoacoustic (PA) performance and photothermal therapy (PTT) efficiency. After systemic administration, the Bi2O2Se QDs accumulate passively in tumors enabling efficient PA imaging of the entire tumors to facilitate imaging‐guided PTT without obvious toxicity. Furthermore, the Bi2O2Se QDs which exhibit degradability in aqueous media not only have sufficient stability during in vivo circulation to perform the designed therapeutic functions, but also can be discharged harmlessly from the body afterward. The results reveal the great potential of Bi2O2Se QDs as a biodegradable multifunctional agent in medical applications.  相似文献   

8.
Bi2O2Se is emerging as a photosensitive functional material for optoelectronics, and its photodetection mechanism is mostly considered to be a photoconductive regime in previous reports. Here, the bolometric effect is discovered in Bi2O2Se photodetectors. The coexistence of photoconductive effect and bolometric effect is generally observed in multiwavelength photoresponse measurements and then confirmed with microscale local heating experiments. The unique photoresponse of Bi2O2Se photodetectors may arise from a change of hot electrons during temperature rises instead of photoexcited holes and electrons. Direct proof of the bolometric effect is achieved by real‐time temperature tracking of Bi2O2Se photodetectors under time evolution after light excitation. Moreover, the Bi2O2Se bolometer shows a high temperature coefficient of resistance (?1.6% K?1), high bolometric coefficient (?31 nA K?1), and high bolometric responsivity (>320 A W?1). These findings offer a new approach to develop bolometric photodetectors based on Bi2O2Se layered materials.  相似文献   

9.
Transition metal dichalcogenides (TMDs) van der Waals (vdW) 1D heterostructures are recently synthesized from 2D nanosheets, which open up new opportunities for potential applications in electronic and optoelectronic devices. The most recent and promising strategies in regards to forming 1D TMDs nanotubes (NTs) or nanoscrolls (NSs) in this review article as well as their heterostructures that are produced from 2D TMDs are summarized. In order to improve the functionality of ultrathin 1D TMDs that are coaxially combined with boron nitride nanotubes and single-walled carbon nanotubes. 1D heterostructured devices perform better than 2D TMD nanosheets when the two devices are compared. The photovoltaic effect in WS2 or MoS2 NTs without a junction may exceed the Shockley–Queisser limit for the above-band-gap photovoltage generation. Photoelectrochemical hydrogen evolution is accelerated when monolayer WS2 or MoS2 NSs are incorporated into a heterojunction. In addition, the photovoltaic performance of the WSe2/MoS2 NSs junction is superior to that of the performance of MoS2 NSs. The summary of the current research about 1D TMDs can be used in a variety of ways, which assists in the development of new types of nanoscale optoelectronic devices. Finally, it also summarizes the current challenges and prospects.  相似文献   

10.
Ultrafast interlayer charge transfer is one of the most distinct features of van der Waals (vdW) heterostructures. Its dynamics competes with carrier thermalization such that the energy of nonthermalized photocarriers may be harnessed by band engineering. In this study, nonthermalized photocarrier energy is harnessed to achieve near-infrared (NIR) to visible light upconversion in a metal–insulator–semiconductor (MIS) vdW heterostructure tunnel diode consisting of few-layer graphene (FLG), hexagonal boron nitride (hBN), and monolayer tungsten disulfide (WS2). Photoexcitation of the electrically biased heterostructure with 1.58 eV NIR laser in the linear absorption regime generates emission from the ground exciton state of WS2, which corresponds to upconversion by ≈370 meV. The upconversion is realized by electrically assisted interlayer transfer of nonthermalized photoexcited holes from FLG to WS2, followed by formation and radiative recombination of excitons in WS2. The photocarrier transfer rate can be described by Fowler–Nordheim tunneling mechanism and is electrically tunable by two orders of magnitude by tuning voltage bias applied to the device. This study highlights the prospects for realizing novel electro-optic upconversion devices by exploiting electrically tunable nonthermalized photocarrier relaxation dynamics in vdW heterostructures.  相似文献   

11.
Bi2O2Se is the most promising 2D material due to its semiconducting feature and high mobility, making it propitious channel material for high-performance electronics that demands highly crystalline Bi2O2Se at low-growth temperature. Here, a low-temperature salt-assisted chemical vapor deposition approach for growing single-domain Bi2O2Se on a millimeter scale with thicknesses of multilayer to monolayer is presented. Because of the advantage of thickness-dependent growth, systematical scrutiny of layer-dependent Raman spectroscopy of Bi2O2Se from monolayer to bulk is investigated, revealing a redshift of the A1g mode at 162.4 cm−1. Moreover, the long-term environmental stability of ≈2.4 nm thick Bi2O2Se is confirmed after exposing the sample for 1.5 years to air. The backgated field effect transistor (FET) based on a few-layered Bi2O2Se flake represents decent carrier mobility (≈287 cm2 V−1s−1) and an ON/OFF ratio of up to 107. This report indicates a technique to grow large-domain thickness controlled Bi2O2Se single crystals for electronics.  相似文献   

12.
2D materials are considered as intriguing building blocks for next‐generation optoelectronic devices. However, their photoresponse performance still needs to be improved for practical applications. Here, ultrasensitive 2D phototransistors are reported employing chemical vapor deposition (CVD)‐grown 2D Bi2O2Se transferred onto silicon substrates with a noncorrosive transfer method. The as‐transferred Bi2O2Se preserves high quality in contrast to the serious quality degradation in hydrofluoric‐acid‐assisted transfer. The phototransistors show a responsivity of 3.5 × 104 A W?1, a photoconductive gain of more than 104, and a time response in the order of sub‐millisecond. With back gating of the silicon substrate, the dark current can be reduced to several pA. This yields an ultrahigh sensitivity with a specific detectivity of 9.0 × 1013 Jones, which is one of the highest values among 2D material photodetectors and two orders of magnitude higher than that of other CVD‐grown 2D materials. The high performance of the phototransistor shown here together with the developed unique transfer technique are promising for the development of novel 2D‐material‐based optoelectronic applications as well as integrating with state‐of‐the‐art silicon photonic and electronic technologies.  相似文献   

13.
Sangwan  Vinod K.  Kang  Joohoon  Lam  David  Gish  J. Tyler  Wells  Spencer A.  Luxa  Jan  Male  James P.  Snyder  G. Jeffrey  Sofer  Zdeněk  Hersam  Mark C. 《Nano Research》2021,14(6):1961-1966

Emerging layered semiconductors present multiple advantages for optoelectronic technologies including high carrier mobilities, strong light-matter interactions, and tunable optical absorption and emission. Here, metal-semiconductor-metal avalanche photodiodes (APDs) are fabricated from Bi2O2Se crystals, which consist of electrostatically bound [Bi2O2]2+ and [Se]2− layers. The resulting APDs possess an intrinsic carrier multiplication factor up to 400 at 7 K with a responsivity gain exceeding 3,000 A/W and bandwidth of ~ 400 kHz at a visible wavelength of 515.6 nm, ultimately resulting in a gain bandwidth product exceeding 1 GHz. Due to exceptionally low dark currents, Bi2O2Se APDs also yield high detectivities up to 4.6 × 1014 Jones. A systematic analysis of the photocurrent temperature and bias dependence reveals that the carrier multiplication process in Bi2O2Se APDs is consistent with a reverse biased Schottky diode model with a barrier height of ~ 44 meV, in contrast to the charge trapping extrinsic gain mechanism that dominates most layered semiconductor phototransistors. In this manner, layered Bi2O2Se APDs provide a unique platform that can be exploited in a diverse range of high-performance photodetector applications.

  相似文献   

14.
The coexistence of large conductivity and robust ferroelectricity is promising for high-performance ferroelectric devices based on polarization-controllable highly efficient carrier transport. Distinct from traditional perovskite ferroelectrics, Bi2WO6 with a layered structure shows a great potential to preserve its ferroelectricity under substantial electron doping. Herein, by artificial design of photosensitive heterostructures with desired band alignment, three orders of magnitude enhancement of the short-circuit photocurrent is achieved in Bi2WO6/SrTiO3 at room temperature. The microscopic mechanism of this large photocurrent originates from separated transport of electrons and holes in [WO4]−2 and [Bi2O2]+2 layers respectively with a large in-plane conductivity, which is understood by a combination of ab initio calculations and spectroscopic measurements. The layered electronic structure and appropriately designed band alignment in this layered ferroelectric heterostructure provide an opportunity to achieve high-performance and nonvolatile switchable electronic devices.  相似文献   

15.
Bismuth oxyselenide (Bi2O2Se), a new type of 2D material, has recently attracted increased attention due to its robust bandgap, stability under ambient conditions, and ultrahigh electron mobility. In such complex oxides, fine structural distortion tends to play a decisive role in determining the unique physical properties, such as the ferrorotational order, ferroelectricity, and magnetoelasticity. Therefore, an in-depth investigation of the fine structural symmetry of Bi2O2Se is necessary to exploit its potential applications. However, conventional techniques are either time consuming or requiring tedious sample treatment. Herein, a noninvasive and high-throughput approach is reported for characterizing the fine structural distortion in 2D centrosymmetric Bi2O2Se by polarization-dependent third-harmonic generation (THG). Unprecedentedly, the divergence between the experimental results and the theoretical prediction of the perpendicular component of polarization-dependent THG indicates a fine structural distortion, namely, a <1.4° rotation of the oxygen square in the tetragonal (Bi2O2) layers. This rotation breaks the intrinsic mirror symmetry of 2D Bi2O2Se, eventually reducing the symmetry from the D4h to the C4h point group. The results demonstrate that THG is highly sensitive to even fine symmetry variations, thereby showing its potential to uncover hidden phase transitions and interacting polarized sublattices in novel 2D material systems.  相似文献   

16.
Charge transfer in transition‐metal‐dichalcogenides (TMDs) heterostructures is a prerequisite for the formation of interlayer excitons, which hold great promise for optoelectronics and valleytronics. Charge accumulation accompanied by a charge‐transfer process can introduce considerable effect on interlayer exciton‐based applications; nevertheless, this aspect has been rarely studied up to date. This work demonstrates how the charge accumulation affects the light emission of interlayer excitons in van der Waals heterobilayers (HBs) consisting of monolayer WSe2 and WS2. As excitation power increases, the photoluminescence intensity of interlayer excitons increases more rapidly than that of intralayer excitons. The phenomenon can be explained by charge‐accumulation effect, which not only increases the recombination probability of interlayer excitons but also saturates the charge‐transfer process. This scenario is further confirmed by a careful examination of trion binding energy of WS2, which nonlinearly increases with the increase of the excitation power before reaching a maximum of about 75 meV. These investigations provide a better understanding of interlayer excitons and trions in HBs, which may provoke further explorations of excitonic physics as well as TMDs‐based devices.  相似文献   

17.
Atomically thin oxychalcogenides have been attracting intensive attention for their fascinating fundamental properties and application prospects. Bi2O2Se, a representative of layered oxychalcogenides, has emerged as an air‐stable high‐mobility 2D semiconductor that holds great promise for next‐generation electronics. The preparation and device fabrication of high‐quality Bi2O2Se crystals down to a few atomic layers remains a great challenge at present. Here, molecular beam epitaxy (MBE) of atomically thin Bi2O2Se films down to monolayer on SrTiO3 (001) substrate is achieved by co‐evaporating Bi and Se precursors in oxygen atmosphere. The interfacial atomic arrangements of MBE‐grown Bi2O2Se/SrTiO3 are unambiguously revealed, showing an atomically sharp interface and atom‐to‐atom alignment. Importantly, the electronic band structures of one‐unit‐cell (1‐UC) thick Bi2O2Se films are observed by angle‐resolved photoemission spectroscopy (ARPES), showing low effective mass of ≈0.15 m0 and bandgap of ≈0.8 eV. These results may be constructive to the synthesis of other 2D oxychalcogenides and investigation of novel physical properties.  相似文献   

18.
Heat dissipation is a major limitation of high-performance electronics. This is especially important in emerging nanoelectronic devices consisting of ultra-thin layers, heterostructures, and interfaces, where enhancement in thermal transport is highly desired. Here, ultra-high interfacial thermal conductance in encapsulated van der Waals (vdW) heterostructures with single-layer transition metal dichalcogenides MX2 (MoS2, WSe2, WS2) sandwiched between two hexagonal boron nitride (hBN) layers is reported. Through Raman spectroscopic measurements of suspended and substrate-supported hBN/MX2/hBN heterostructures with varying laser power and temperature, the out-of-plane interfacial thermal conductance in the vertical stack is calibrated. The measured interfacial thermal conductance between MX2 and hBN reaches 74 ± 25 MW m−2 K−1, which is at least ten times higher than the interfacial thermal conductance of MX2 in non-encapsulation structures. Molecular dynamics (MD) calculations verify and explain the experimental results, suggesting a full encapsulation by hBN layers is accounting for the high interfacial conductance. This ultra-high interfacial thermal conductance is attributed to the double heat transfer pathways and the clean and tight vdW interface between two crystalline 2D materials. The findings in this study reveal new thermal transport mechanisms in hBN/MX2/hBN structures and shed light on building novel hBN-encapsulated nanoelectronic devices with enhanced thermal management.  相似文献   

19.
Electrochemical CO2 reduction reaction (CO2RR) is a promising approach to convert CO2 to carbon-neutral fuels using external electric powers. Here, the Bi2S3-Bi2O3 nanosheets possessing substantial interface being exposed between the connection of Bi2S3 and Bi2O3 are prepared and subsequently demonstrate to improve CO2RR performance. The electrocatalyst shows formate Faradaic efficiency (FE) of over 90% in a wide potential window. A high partial current density of about 200 mA cm?2 at ?1.1 V and an ultralow onset potential with formate FE of 90% are achieved in a flow cell. The excellent electrocatalytic activity is attributed to the fast-interfacial charge transfer induced by the electronic interaction at the interface, the increased number of active sites, and the improved CO2 adsorption ability. These collectively contribute to the faster reaction kinetics and improved selectivity and consequently, guarantee the superb CO2RR performance. This study provides an appealing strategy for the rational design of electrocatalysts to enhance catalytic performance by improving the charge transfer ability through constructing a functional heterostructure, which enables interface engineering toward more efficient CO2RR.  相似文献   

20.
A series of novel ternary TiO2/MgBi2O6/Bi2O3 nanocomposites were synthesized by a facile hydrothermal method. The ternary nanocomposites were characterized by XRD, FESEM, HRTEM, EDX, PL, EIS, Photocurrent, UV–vis DRS, BET, XPS, Raman, and FT-IR analyses. The photocatalytic performance of TiO2 for the degradation of tetracycline antibiotic after combining with MgBi2O6/Bi2O3 was significantly improved, which is 46.1 and 18.5 times higher than pristine TiO2 and MgBi2O6/Bi2O3 photocatalysts, respectively. Furthermore, the ternary photocatalyst efficiently degraded MO, RhB, and MB dye pollutants, which is 22.5, 30.4, and 30.0 as high as TiO2 and 11.2, 14.4, and 17.8 folds larger than MgBi2O6/Bi2O3 photocatalysts, respectively. The photoluminescence and electrochemical analyses confirmed promoted separation and facile transfer of the charges thanks to construction of n-n-p heterojunctions among n-TiO2, n-MgBi2O6, and p-Bi2O3 components and more production of charge carriers due to integration of small band gap MgBi2O6 and Bi2O3 components with wide band gap TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号