首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally believed that the photoresponse behavior of organic field-effect transistors (OFETs) reflects the intrinsic property of organic semiconductors. However, this photoresponse hinders the application of OFETs in transparent displays as driven circuits due to the current instability resulting from the threshold voltage shift under light illumination. It is necessary to relieve the photosensitivity of OFETs to keep the devices stable. 2,6-diphenyl anthracene thin-film and single-crystal OFETs are fabricated on different substrates, and it is found that the degree of molecular order in the conducting channels and the defects at the dielectric/semiconductor interface play important roles in determining the phototransistor performance. When highly ordered single-crystal OFETs are fabricated on polymeric substrates with low defects, the photosensitivity (P) decreases by more than 105 times and the threshold voltage shift (ΔVT) is almost eliminated compared with the corresponding thin-film OFETs. This phenomenon is further verified by using another three organic semiconductors for similar characterizations. The decreased P and ΔVT of OFETs ensure a good current stability for OFETs to drive organic light-emitting diodes efficiently, which is essential to the application of OFETs in flexible and transparent displays.  相似文献   

2.
Artificial transistors represent an ideal means for meeting the requirements in interfacing with biological systems. It is pivotal to develop new proton-conductive materials for the transduction between biochemical events and electronic signals. Herein, the first demonstration of a porous organic polymer membrane (POPM) as a proton-conductive material for protonic field-effect transistors is presented. The POPM is readily prepared through a thiourea-formation condensation reaction. Under hydrated conditions and at room temperature, the POPM delivers a proton mobility of 5.7 × 10−3 cm2 V−1 s−1; the charge carrier densities are successfully modulated from 4.3 × 1017 to 14.1 × 1017 cm−3 by the gate voltage. This study provides a type of promising modular proton-conductive materials for bioelectronics application.  相似文献   

3.
4.
5.
6.
To improve the performance of organic field-effect transistors (OFETs) employing π-conjugated polymers, a basic understanding of the relationships between the material properties and device characteristics is crucial. Although the density of states (DOS) distribution is one of the essential material properties of semiconducting polymers, insights into how the DOS shape affects the mobility (µ), subthreshold swing (S), and contact resistance (RC) in OFETs remain lacking. In this study, by combining sensitive DOS measurements and multilayered OFET structures, it is experimentally demonstrated that narrower DOS widths in the polymer channels lead to higher µ, smaller S, and lower RC. By contrast, variation of the DOS in the bulk layer does not affect the performance. These results demonstrate a direct relationship between the polymer properties and OFET performance and highlight the importance of controlling the DOS width in π-conjugated polymers.  相似文献   

7.
The emergence of flexible organic electronics that span the fields of physics and biomimetics creates the possibility for increasingly simple and intelligent products for use in everyday life. Organic field-effect transistors (OFETs), with their inherent flexibility, light weight, and biocompatibility, have shown great promise in the field of biomimicry. By applying such biomimetic OFETs for the internet of things (IoT) makes it possible to imagine novel products and use cases for the future. Recent advances in flexible OFETs and their applications in biomimetic systems are reviewed. Strategies to achieve flexible OFETs are individually discussed and recent progress in biomimetic sensory systems and nervous systems is reviewed in detail. OFETs are revealed to be one of the best systems for mimicking sensory and nervous systems. Additionally, a brief discussion of information storage based on OFETs is presented. Finally, a personal view of the utilization of biomimetic OFETs in the IoT and future challenges in this research area are provided.  相似文献   

8.
在空气中稳定的n型有机半导体材料是当前有机场效应晶体管(OFET)研究的重要方向.分子中引入氟取代基和三氟甲基/全氟烷基可能会将有机半导体材料从p型转变成n型,同时还可提高有机半导体材料的稳定性.从分子结构的角度出发介绍了含氟类有机半导体材料的最新进展及其在场效应晶体管中的应用,并进一步提出了该领域的研究前景.  相似文献   

9.
Solution-processable organic semiconductors are one of the promising materials for the next generation of organic electronic products, which call for high-performance materials and mature processing technologies. Among many solution processing methods, meniscus-guided coating (MGC) techniques have the advantages of large-area, low-cost, adjustable film aggregation, and good compatibility with the roll-to-roll process, showing good research results in the preparation of high-performance organic field-effect transistors. In this review, the types of MGC techniques are first listed and the relevant mechanisms (wetting mechanism, fluid mechanism, and deposition mechanism) are introduced. The MGC processes are focused and the effect of the key coating parameters on the thin film morphology and performance with examples is illustrated. Then, the performance of transistors based on small molecule semiconductors and polymer semiconductor thin films prepared by various MGC techniques is summarized. In the third section, various recent thin film morphology control strategies combined with the MGCs are introduced. Finally, the advanced progress of large-area transistor arrays and the challenges for roll-to-roll processes are presented using MGCs. Nowadays, the application of MGCs is still in the exploration stage, its mechanism is still unclear, and the precise control of film deposition still needs experience accumulation.  相似文献   

10.
11.
Benefiting from the advantages of organic field‐effect transistors (OFETs), including synthetic versatility of organic molecular design and environmental sensitivity, gas sensors based on OFETs have drawn much attention in recent years. Potential applications focus on the detection of specific gas species such as explosive, toxic gases, or volatile organic compounds (VOCs) that play vital roles in environmental monitoring, industrial manufacturing, smart health care, food security, and national defense. To achieve high sensitivity, selectivity, and ambient stability with rapid response and recovery speed, the regulation and adjustment of the nano/microstructure of the organic semiconductor (OSC) layer has proven to be an effective strategy. Here, the progress of OFET gas sensors with nano/microstructure is selectively presented. Devices based on OSC films one dimensional (1D) single crystal nanowires, nanorods, and nanofibers are introduced. Then, devices based on two dimensional (2D) and ultrathin OSC films, fabricated by methods such as thermal evaporation, dip‐coating, spin‐coating, and solution‐shearing methods are presented, followed by an introduction of porous OFET sensors. Additionally, the applications of nanostructured receptors in OFET sensors are given. Finally, an outlook in view of the current research state is presented and eight further challenges for gas sensors based on OFETs are suggested.  相似文献   

12.
13.
14.
Inspired by the photosynthesis process of natural plants, multifunctional transistors based on natural biomaterial chlorophyll and organic semiconductors (OSCs) are reported. Functions as photodetectors (PDs) and light-stimulated synaptic transistors (LSSTs) can be switched by gate voltage. As PDs, the devices exhibit ultrahigh photoresponsivity up to 2 × 106 A W−1, detectivity of 6 × 1015 Jones, and Iphoto/Idark ratio of 2.7 × 106, which make them among the best reported organic PDs. As LSSTs, important synaptic functions similar to biological synapses are demonstrated, together with a dynamic learning and forgetting process and image-processing function. Significantly, benefiting from the ultrahigh photosensitivity of chlorophyll, the lowest operating voltage and energy consumption of the LSSTs can be 10−5 V and 0.25 fJ, respectively. The devices also exhibit high flexibility and long-term air stability. This work provides a new guide for developing organic electronics based on natural biomaterials.  相似文献   

15.
16.
17.
18.
Organic thin-film transistors for chemical and biological sensing   总被引:1,自引:0,他引:1  
Organic thin-film transistors (OTFTs) show promising applications in various chemical and biological sensors. The advantages of OTFT-based sensors include high sensitivity, low cost, easy fabrication, flexibility and biocompatibility. In this paper, we review the chemical sensors and biosensors based on two types of OTFTs, including organic field-effect transistors (OFETs) and organic electrochemical transistors (OECTs), mainly focusing on the papers published in the past 10 years. Various types of OTFT-based sensors, including pH, ion, glucose, DNA, enzyme, antibody-antigen, cell-based sensors, dopamine sensor, etc., are classified and described in the paper in sequence. The sensing mechanisms and the detection limits of the devices are described in details. It is expected that OTFTs may have more important applications in chemical and biological sensing with the development of organic electronics.  相似文献   

19.
Nanowires are important potential candidates for the realization of the next generation of sensors. They offer many advantages such as high surface‐to‐volume ratios, Debye lengths comparable to the target molecule, minimum power consumption, and they can be relatively easily incorporated into microelectronic devices. Accordingly, there has been an intensified search for novel nanowire materials and corresponding platforms for realizing single‐molecule detection with superior sensing performance. In this work, progress made towards the use of nanowires for achieving better sensing performance is critically reviewed. In particular, various nanowires types (metallic, semiconducting, and insulating) and their employment either as a sensor material or as a template material are discussed. Major obstacles and future steps towards the ultimate nanosensors based on nanowires are addressed.  相似文献   

20.
Organic field-effect transistors (OFETs) are considered in technological applications for which low cost or mechanical flexibility are crucial factors. The environmental stability of the organic semiconductors used in OFETs has improved to a level that is now sufficient for commercialization. However, serious problems remain with the stability of OFETs under operation. The causes for this have remained elusive for many years. Surface potentiometry together with theoretical modeling provide new insights into the mechanisms limiting the operational stability. These indicate that redox reactions involving water are involved in an exchange of mobile charges in the semiconductor with protons in the gate dielectric. This mechanism elucidates the established key role of water and leads in a natural way to a universal “stress function”, describing the stretched exponential-like time dependence ubiquitously observed. Further study is needed to determine the generality of the mechanism and the role of other mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号