首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
作为新型CO2吸收剂的乙酸钙循环碳酸化特性   总被引:8,自引:3,他引:5  
钙基吸收剂的循环煅烧/碳酸化反应是煤燃烧或气化过程中捕获CO2的有效途径。该文采用乙酸溶液调质石灰石的产物乙酸钙作为CO2的新型吸收剂,以解决石灰石经过多次循环煅烧/碳酸化反应后吸收CO2能力急剧衰减的问题。在煅烧/碳酸化反应器上,研究碳酸化温度和煅烧温度对乙酸钙循环碳酸化转化率的影响。结果表明:碳酸化温度在650~700 ℃时乙酸钙能获得很高的碳酸化转化率,经20次循环后转化率仍高达0.5,明显高于石灰石。在高浓度CO2气氛下,在较高的煅烧温度(920~1 050 ℃)时,乙酸钙仍能获得较高的碳酸化转化率。乙酸钙的抗烧结能力较石灰石更强。多次循环后乙酸钙煅烧后的比表面积和孔容均大于煅烧后的石灰石,且孔容分布和孔比表面积分布均优于煅烧后的石灰石。  相似文献   

2.
作为新型C02吸收剂的乙酸钙循环碳酸化特性   总被引:1,自引:0,他引:1  
钙基吸收剂的循环煅烧/碳酸化反应是煤燃烧或气化过程中捕获CO2的有效途径.该文采用乙酸溶液调质石灰石的产物乙酸钙作为C02的新型吸收剂,以解决石灰石经过多次循环煅烧,碳酸化反应后吸收CO2能力急剧衰减的问题.在煅烧/碳酸化反应器上,研究碳酸化温度和煅烧温度对乙酸钙循环碳酸化转化率的影响.结果表明:碳酸化温度在650~700℃时乙酸钙能获得很高的碳酸化转化率,经20次循环后转化率仍高达0.5,明显高于石灰石.在高浓度CO2气氛下,在较高的煅烧温度(920~1050℃)时,乙酸钙仍能获得较高的碳酸化转化率.乙酸钙的抗烧结能力较石灰石更强.多次循环后乙酸钙煅烧后的比表面积和孔容均大于煅烧后的石灰石,且孔容分布和孔比表面积分布均优于煅烧后的石灰石.  相似文献   

3.
钾钠盐类对钙基CO2吸附剂循环碳酸化的影响   总被引:3,自引:1,他引:2  
钙基CO2吸附剂如石灰石在循环煅烧/碳酸化过程中随着循环次数的增加碳酸化转化率迅速衰减,这对CO2的捕捉极为不利。该文在常压煅烧/碳酸化反应器系统上研究KCl、K2CO3、NaCl和Na2CO3作为添加剂对CaCO3循环碳酸化特性的影响。结果表明,在初始循环时,钾钠盐类的添加造成CaCO3碳酸化转化率的明显衰减,但随着循环次数的增加,添加剂使CaCO3转化率下降缓慢,反而高于原CaCO3转化率。钾盐较钠盐对CaCO3循环捕捉CO2能力有更好的促进作用,钾/钠氯化物比钾/钠碳酸盐效果更好。在CaCO3中添加质量比为0.5%~0.6%的KCl,碳酸化温度在680~700℃时,吸附剂能取得最高的循环碳酸化转化率,经20次循环反应后转化率可达0.44,而在相同条件下原CaCO3转化率仅为0.21。KCl对CaCO3碳酸化的影响包括两方面。一方面,KCl虽然在初始循环时使CaCO3煅烧后的比表面积和比孔容减小,但在长期的循环中能够使它们保持稳定;另一方面,KCl能增加反应中碳酸化产物层的缺陷浓度,有可能增大未反应Ca离子通过产物层的扩散率。因此添加了KCl的CaCO3能够在长期煅烧/碳酸化循环中保持良好的碳酸化性能。  相似文献   

4.
石灰石的循环煅烧/碳酸化反应是燃煤电站分离CO2的有效方法。为解决石灰石在吸收CO2过程中随着循环反应次数增加碳酸化能力迅速衰减的问题,采用提高反应压力的方法提高其CO2捕获效率。研究表明,提高碳酸化反应压力有利于提高钙基吸收剂的碳酸化转化率。碳酸化反应压力一定时,钙基吸收剂在650~850℃下第一次转化率比较接近,随碳酸化温度的增加碳酸化转化率呈先增加后下降的趋势,碳酸化温度较高时碳酸化转化率随循环次数的增加下降较快,但仍比常压的最佳反应条件下的大。在700℃和0.5MPa下钙基吸收剂获得最高的碳酸化转化率。碳酸化反应压力和温度一定时,增加碳酸化气氛中CO2浓度,碳酸化转化率并不一定提高,钙基吸收剂的加压碳酸化循环反应对不同的煅烧气氛具有非常好的适应性。  相似文献   

5.
利用自制的能实现等温下热重测量的装置,针对石灰石循环吸收CO2工艺,研究了烟气中水蒸气对石灰石循环煅烧/碳酸化特性的影响规律。结果表明,煅烧阶段水蒸气的存在会降低吸收剂活性,而碳酸化过程中水蒸气则会大幅度提高碳酸化转化率,如,在20%水蒸气下,第8次转化率为29.43%,而无水时仅为19.46%。当煅烧及碳酸化阶段均含有20%水蒸气时,衰减趋势和转化率与仅碳酸化过程含有水蒸气类似,但呈现的规律不是仅煅烧或仅碳酸化阶段存在水蒸气时效果的简单相加。在本实验条件及实验温度范围内,考虑水蒸气的影响,900~950℃煅烧、700℃碳酸化是针对实验用石灰石的较佳反应温度。  相似文献   

6.
利用自制的能实现等温下热重测量的装置,针对石灰石循环吸收CO2工艺,研究了烟气中水蒸气对石灰石循环煅烧/碳酸化特性的影响规律。结果表明,煅烧阶段水蒸气的存在会降低吸收剂活性,而碳酸化过程中水蒸气则会大幅度提高碳酸化转化率,如,在20%水蒸气下,第8次转化率为29.43%,而无水时仅为19.46%。当煅烧及碳酸化阶段均含有20%水蒸气时,衰减趋势和转化率与仅碳酸化过程含有水蒸气类似,但呈现的规律不是仅煅烧或仅碳酸化阶段存在水蒸气时效果的简单相加。在本实验条件及实验温度范围内,考虑水蒸气的影响,900~950℃煅烧、700℃碳酸化是针对实验用石灰石的较佳反应温度。  相似文献   

7.
采用醋酸溶液改性的石灰石作为CO2高温吸收剂,借助于N2吸附法研究了改性石灰石在循环煅烧/碳酸化反应过程中CaO分形维数的变化规律。结果表明:石灰石经醋酸改性后,其煅烧产物CaO的分形维数得到提高。随循环次数增加,来自天然石灰石CaO的分形维数迅速减小,而来自改性石灰石CaO的分形维数随循环次数增加而下降缓慢,且在相同循环次数时改性石灰石CaO的分形维数均高于天然石灰石CaO。研究发现来自改性和天然石灰石的CaO分形维数与其CO2捕集性能之间,分形维数与比表面积之间都存在着明显的内在联系。改性钙基吸收剂具有更高循环捕集CO2性能的实质是其煅烧产物CaO在循环煅烧/碳酸化过程中保持了较大的分形维数。  相似文献   

8.
钙基吸收剂循环锻烧/碳酸化反应过程特性研究   总被引:3,自引:1,他引:2  
在常压煅烧/碳酸化反应器系统上,研究随着循环反应次数N的变化操作条件对钙基吸收剂循环煅烧/碳酸化反应(CCR)吸收CO2过程中碳酸化转化率XN的影响规律,操作条件包括碳酸化温度TCAR、煅烧温度TCAL、颗粒粒径d等。给出了综合碳酸化转化率YN的定义,并用YN比较不同钙基吸收剂吸收CO2能力的大小。结果表明:TCAR为700℃时石灰石的XN最高,白云石则在650℃时XN最高,在650~700℃时白云石的XN远高于石灰石,但它们的YN相差不大;当TCAL超过1050℃时石灰石的XN急剧衰减,而白云石的XN则衰减程度不大,在高温煅烧时白云石的YN比石灰石更高;随粒径的增大,石灰石的XN逐渐减小,而白云石则存在最佳的粒径分布使XN最大,粒径的变化对石灰石的XN影响更大。随循环CCR反应次数的增加,石灰石煅烧产物的微观结构变化较大,而白云石则变化较小。  相似文献   

9.
采用沉降炉实验系统研究了O2/CO2燃煤气氛下醋酸钙、醋酸调质石灰石和木醋调质石灰石再燃脱硝性能,探索了CO2浓度、温度、再燃比、氧浓度、停留时间、SO2、氨氮比等反应参数对再燃和先进再燃脱硝的影响。结果表明:O2/CO2气氛下,提高CO2浓度有助于有机钙再燃脱硝反应。有机钙再燃和先进再燃脱硝适宜工况参数:温度范围1223~1373 K、再燃比为14%~17%、再燃区入口氧浓度为3%左右、停留时间为0.8 s,氨氮比为0.75。典型工况条件下,有机钙基本再燃脱硝效率为62.0%~82.7%,先进再燃脱硝效率88.3%~95.6%。醋酸和木醋调质石灰石再燃和先进再燃脱硝性能略优于醋酸钙。O2/CO2气氛下有机钙再燃在最佳脱硫温度下不能获得最大脱硝效率,先进再燃可以明显改善脱硝性能。最佳反应条件下木醋调质石灰石先进再燃脱硫脱硝效率分别为73.2%和94.8%。  相似文献   

10.
燃煤CO2减排技术   总被引:8,自引:0,他引:8  
燃煤CO2等温室气体的大量排放是造成全球气候变暖的一个重要原因。阐述了我国CO2的排放状况,概括了减少燃煤CO2排放的3种途径:提高能源效率、改革传统的煤炭燃烧利用方式、烟气中CO2的捕获与储存。综述了国际社会减排CO2的努力以及各国新一代的洁净煤技术计划。着重介绍了几种燃煤CO2减排的新技术,包括CaO碳酸化-煅烧循环的CO2分离(CCR)技术、O2/CO2循环燃烧技术及化学链燃烧(CLC)技术。比较了CaO碳酸化-煅烧循环的CO2分离技术与使用MEA的吸收技术的经济性。提出了一类用于化学链燃烧的新型非金属氧载体,给出了这些氧载体在与不同气体燃料组成的反应系统的热力学以及动力学特性的一些初步结论。  相似文献   

11.
通过TGA-xRD相定量分析联合对石灰石在O2/CO2气氛中的硫化特性进行了实验研究。结果表明,在O2/CO2气氛下,高CO2浓度使石灰石煅烧反应减慢,系统中较长时间内有高活性CaO产生,同时,由于在CaO/CaCO3界面上CO2的产生使CaSO4产物层扩散阻力降低,这两方面因素导致CaO在O2/CO2气氛下较长时间内维持较高的硫化速率,使得石灰石在O2/CO2气氛下可以取得较高的Ca转化率。1000℃为石灰石在O2/CO2气氛下的最佳硫化反应温度。相同硫化工况下,石灰石在O2/CO2气氛下硫化速率和Ca转化率均随CO2分压升高而升高,表明O2/CO2气氛更适合于高温脱硫。  相似文献   

12.
研究了新鲜石灰石和经过煅烧/碳酸化反应(CCR)反复循环后的石灰石在烟煤煤焦CO2气化反应中的催化特性.结果表明,固定碳转化率随新鲜石灰石添加比例的增加而增大,石灰石添加比例为5%时其催化特性达到最佳,且催化活性随气化温度的升高而降低;在不同热解温度下添加2.5%新鲜石灰石制得的煤焦的气化特性与气化温度密切相关,当气化温度高于热解温度时,催化活性基本不受热解温度影响;随着CCR循环次数的增加,低温气化时石灰石催化活性比新鲜石灰石略低,但仍可作为煤焦气化反应的有效催化剂.  相似文献   

13.
石灰石和贝壳的煅烧及CO2吸收循环特性   总被引:1,自引:0,他引:1  
选取天然石灰石和贝壳作为钙基材料,进行CaCO3/CaO循环煅烧/碳酸化反应,原料成本低并且资源丰富。该文在热重分析仪上对不同原料的煅烧动力学特性和CO2循环吸收特性进行研究,对循环前后产物的扫描电镜(scanning electron microscopy,SEM)形貌及其孔径分布进行分析。结果表明,随着循环次数的增加,二者活性都有所降低,通过多次循环后样品的孔径分布和扫描电镜形貌观察到,石灰石微孔减少,烧结现象严重,而贝壳分布在中孔和大孔之间,钙利用率较低,形貌未发生明显变化。由于二者组分和结构上的差异,使得天然石灰石在CO2循环吸收性能上优于贝壳,而贝壳则具有较好的循环稳定性。  相似文献   

14.
在鼓泡流化床上研究电石渣在循环煅烧/碳酸化反应中的CO2捕集特性,考察循环次数、反应温度、流化数和颗粒粒径对流态化下电石渣循环碳酸化转化率和速率的影响。结果表明:循环次数增加使电石渣碳酸化转化率衰减,经过50次循环其转化率可达0.2,高于石灰石。反应初期,电石渣碳酸化速率低于石灰石,但经过一段时间后高于石灰石。碳酸化温度为700℃,煅烧温度为850~900℃时可使电石渣保持较高循环捕集CO2性能。增加流化数提高了电石渣化学反应控制阶段的碳酸化速率,对产物层扩散阶段速率影响较小。颗粒粒径增大对化学反应控制阶段速率影响不大,但降低了产物层扩散阶段速率。  相似文献   

15.
采用可以实现恒温过程的自制热重分析装置,在每次循环过程中,不固定反应时间,根据化学反应进程决定停留时间,在排除反应时间的干扰前提下,研究了反应温度对石灰石循环煅烧/碳酸化高温分离CO2的特性。结果表明,实验范围内煅烧温度在900℃与950℃下碳酸化转化率相差不多,而1 000℃时,吸收剂活性明显下降。碳酸化温度700℃时转化率最高。  相似文献   

16.
钙基CO2吸收剂循环反应特性的试验与模拟   总被引:3,自引:1,他引:2  
合成了3种不同质量配比的钙基CO2吸收剂CaO/ Ca12Al14O33,并对CaO/Ca12Al14O33、石灰石、白云石的循环煅烧/碳酸化特性进行试验研究,以考察吸收剂的转化率随循环反应次数的变化规律。试验结果表明,3种吸收剂反应活性均随循环反应次数的增加而降低;在850 ℃煅烧温度下,CaO/Ca12Al14O33(75%/25%)吸收剂在第10次循环后其循环转化率保持在51.7%左右;在900 ℃煅烧温度下,吸收剂活性下降较快,CaO/Ca12Al14O33的反应活性高于石灰石和白云石,且当CaO和Ca12Al14O33的质量比为75%/25%时最优。建立了吸收剂的循环转化率模型以及循环碳酸化过程动力学模型,为反应器的设计提供理论依据。  相似文献   

17.
O2/CO2气氛煤粉燃烧及固硫特性研究   总被引:18,自引:12,他引:18  
该文利用热重法分析了O2/CO2、空气两种不同气氛下煤的燃烧特性,得出与空气条件相比,O2/CO2条件下煤的着火及燃尽温度有明显降低、燃烧特性指数提高的结论,即O2/CO2气氛可改善燃烧过程、优化燃烧特性。同时通过对两种情况下煤粉燃烧钙基脱硫特性的比较,发现较高浓度的CO2气氛可阻止石灰石的分解,其硫化反应机理与传统方式下不同,脱硫效果有较大提高,并且这种优势在一定范围内随温度的升高以及CO2体积含量的增加而愈加显著。由此得出,O2/CO2气氛不仅有助于煤粉燃烧而且可以有效地提高脱硫效率,克服了传统空气方式下高温脱硫效率低的缺点。  相似文献   

18.
纳米复合钙基高温CO2吸收剂的合成与性能   总被引:1,自引:1,他引:0  
钙基高温碳化/煅烧循环的燃后CO2分离技术已经被证明为燃煤电厂尾气CO2捕捉最有吸引力的方式之一.但是,随着循环反应次数的增加,再生的CaO的捕捉效率迅速降低.为了提高多次循环后CaO的碳化效率.文中采用了溶胶凝胶燃烧合成法制备了纳米复合CaO/MgO吸收剂,其中CaO与MgO的摩尔比为10∶1.研究结果表明,采用该方法所制备的钙基吸收剂微观结构蓬松,更有利于增强吸收剂在高温碳酸化过程中的CO2吸附能力.新型复合吸收剂虽然MgO的掺杂量较小,但是仍然具有良好的循环反应性能,孔隙结构在碳化/煅烧过程中相对保持稳定.在30次碳化/煅烧循环后,其碳化效率达到66%,远高于普通分析纯CaO吸收剂.  相似文献   

19.
钙基吸收剂循环煅烧/碳酸化反应是燃煤电站捕获CO2的最有效方法之一。为了解决吸收剂在吸收CO2过程中随着反应次数增加碳酸化能力迅速衰减的问题,采用溶胶凝胶燃烧合成法分别制备了2种复合钙基吸收剂:CaO/MgO(摩尔比10 1)和CaO/MnO2(摩尔比100 2)。研究不同反应条件对吸收剂循环碳酸化特性的影响,获得了最佳反应条件。研究表明,该方法制备的吸收剂微观结构蓬松,碳酸化性能大幅度提高,2种吸收剂随循环次数的增加转化率衰减缓慢,经过50次反应转化率仍高达0.792和0.758,约为石灰石的2.26和2.17倍。  相似文献   

20.
陈江涛  陈鸿伟  陈龙  危日光 《华东电力》2012,(12):2270-2274
为分析CO2浓度对钙基CO2吸收剂循环反应动力学特性的影响规律,利用两段的收缩核模型对石灰石循环反应特性进行了研究。结果表明:反应气氛中CO2浓度的变化只对化学反应控制阶段有较大影响,对产物层扩散控制阶段影响不明显。对于单次循环,CO2浓度的增大促使化学反应控制阶段结束时间缩短,表观化学反应速率常数增大;对于多次循环,CO2浓度的增大导致化学反应阶段表观反应速率常数随着循环次数的增加加速衰减。另外,CaO碳酸化反应在25%CO2浓度下已经饱和,继续增大CO2浓度不能提高最终转化率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号