首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses a job scheduling problem on multiple identical parallel machines so as to minimize job completion time variance (CTV). CTV minimization is closely related to the Just-In-Time philosophy and the service stability concept since it penalizes both earliness and tardiness. Its applications can be found in many real-life areas such as Internet data packet dispatching and production planning. This paper focuses on the unrestricted case of the problem where idle times are allowed to exist before machines start to process jobs. We prove several dominant properties about the optimal solution to the problem. For instance, we prove that the mean completion time (MCT) on each machine should be the same under an optimal schedule. Based on these properties, an efficient heuristic algorithm is proposed. Computational experiments are conducted to test the performance of the proposed algorithm. The outputs demonstrate that the proposed algorithm is near optimal for small problem instances and greatly outperforms some existing algorithms for large problem instances.  相似文献   

2.
We consider the single machine multi-operation jobs total completion time scheduling problem. Each job consists of several operations that belong to different families. In a schedule, each family of job operations may be processed in batches with each batch incurring a set-up time. A job completes when all of its operations have been processed. The objective is to minimize the sum of the job completion times. In the literature, the computational complexity of this problem is posed as open. We show that the problem is strongly NP-hard even when the set-up times are common and the processing time of each operation is 0 or 1.  相似文献   

3.
We address the single-machine batch scheduling problem with the objective of minimizing the total setup cost. This problem arises when there are n jobs that are partitioned into F families and when setup operations are required whenever the machine switches from processing a job of one family to processing a job of another family. We assume that setups do not require time but are associated with a fixed cost which is identical for all setup operations. Each job has a processing time and an associated deadline. The objective is to schedule all jobs such that they are on time with respect to their deadlines and the total setup cost is minimized. We show that the decision version of this problem is NP-complete in the strong sense. Furthermore, we present properties of optimal solutions and an \(O(n\log n+nF)\) algorithm that approximates the cost of an optimal schedule by a factor of F. The algorithm is analyzed in computational tests.  相似文献   

4.
Scheduling a Single Server in a Two-machine Flow Shop   总被引:1,自引:0,他引:1  
We study the problem of scheduling a single server that processes n jobs in a two-machine flow shop environment. A machine dependent setup time is needed whenever the server switches from one machine to the other. The problem with a given job sequence is shown to be reducible to a single machine batching problem. This result enables several cases of the server scheduling problem to be solved in O(n log n) by known algorithms, namely, finding a schedule feasible with respect to a given set of deadlines, minimizing the maximum lateness and, if the job processing times are agreeable, minimizing the total completion time. Minimizing the total weighted completion time is shown to be NP-hard in the strong sense. Two pseudopolynomial dynamic programming algorithms are presented for minimizing the weighted number of late jobs. Minimizing the number of late jobs is proved to be NP-hard even if setup times are equal and there are two distinct due dates. This problem is solved in O(n 3) time when all job processing times on the first machine are equal, and it is solved in O(n 4) time when all processing times on the second machine are equal. Received November 20, 2001; revised October 18, 2002 Published online: January 16, 2003  相似文献   

5.
Minimizing Mean Completion Time in a Batch Processing System   总被引:8,自引:0,他引:8  
We consider batch processing jobs to minimize the mean completion time. A batch processing machine can handle up to $B$ jobs simultaneously. Each job is represented by an arrival time and a processing time. Jobs processed in a batch have the same completion time, i.e., their common starting time plus the processing time of their longest job. For batch processing, non-preemptive scheduling is usually required and we discuss this case. The batch processing problem reduces to the ordinary uniprocessor system scheduling problem if $B=1$. We focus on the other extreme case $B=+\infty$. Even for this seemingly simple extreme case, we are able to show that the problem is NP-hard for the weighted version. In addition, we establish a polynomial time algorithm for a special case when there are only a constant number of job processing times. Finally, we give a polynomial time approximation scheme for the general case.  相似文献   

6.
We consider a scheduling problem in which two agents, each with a set of non-preemptive jobs, compete to perform their jobs on a common bounded parallel-batching machine. Each of the agents wants to minimize an objective function that depends on the completion times of its own jobs. The goal is to schedule the jobs such that the overall schedule performs well with respect to the objective functions of both agents. We focus on minimizing the makespan or the total completion time of one agent, subject to an upper bound on the makespan of the other agent. We distinguish two categories of batch processing according to the compatibility of the agents. In the case where the agents are incompatible, their jobs cannot be processed in the same batch, whereas all the jobs can be processed in the same batch when the agents are compatible. We show that the makespan problem can be solved in polynomial time for the incompatible case and is NP-hard in the ordinary sense for the compatible case. Furthermore, we show that the latter admits a fully polynomial-time approximation scheme. We prove that the total completion time problem is NP-hard and is polynomially solvable for the incompatible case with a fixed number of job types.  相似文献   

7.
We study a supply chain scheduling problem in which n jobs have to be scheduled on a single machine and delivered to m customers in batches. Each job has a due date, a processing time and a lateness penalty (weight). To save batch-delivery costs, several jobs for the same customer can be delivered together in a batch, including late jobs. The completion time of each job in the same batch coincides with the batch completion time. A batch setup time has to be added before processing the first job in each batch. The objective is to find a schedule which minimizes the sum of the weighted number of late jobs and the delivery costs. We present a pseudo-polynomial algorithm for a restricted case, where late jobs are delivered separately, and show that it becomes polynomial for the special cases when jobs have equal weights and equal delivery costs or equal processing times and equal setup times. We convert the algorithm into an FPTAS and prove that the solution produced by it is near-optimal for the original general problem by performing a parametric analysis of its performance ratio.  相似文献   

8.
In this article, we consider a single machine scheduling problem with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the job processing time is defined by a function of its starting time and total normal processing time of jobs in front of it in the sequence. The objective is to determine an optimal schedule so as to minimize the total completion time. This problem remains open for the case of ?1?a?a denotes the learning index; we show that an optimal schedule of the problem is V-shaped with respect to job normal processing times. Three heuristic algorithms utilising the V-shaped property are proposed, and computational experiments show that the last heuristic algorithm performs effectively and efficiently in obtaining near-optimal solutions.  相似文献   

9.
This paper addresses the problem of minimizing makespan for a given set of n jobs to be processed on each of m machines in a static jobshop, subject to the minimum completion time variance (CTV). A lower bound on CTV is developed for the static jobshop problem. A backward scheduling approach is proposed using the observations on the development of lower bound for hierarchical minimization of CTV and makespan. A lower bound on makespan subject to minimum CTV is also presented for this problem. Finally, we present two simulated annealing heuristic approaches using the concepts of forward and backward scheduling. Their performances are compared against each other through the use of the lower bounds established in this work. The simulated annealing heuristic based on backward scheduling is shown to perform well by evaluating the developed heuristics on 82 jobshop problems taken from literature.  相似文献   

10.
We consider the problem of scheduling a set of nonsimultaneously available jobs on one machine. Each job has a ready time only at or after which the job can be processed. All the jobs have a common due date, which needs to be determined. The problem is to determine a due date and a schedule so as to minimize a total penalty depending on the earliness, tardiness and due date. We show that this problem is strongly NP-hard and give an efficient algorithm that finds an optimal due date and schedule when either the job sequence is predetermined or all jobs have the same processing time. We also propose three approximation algorithms for the general and special cases together with their experimental analysis.

Scope and purpose

We consider the single machine due date assignment problem for scheduling jobs which are ready for processing at different times. The problem under consideration arises in production planning and scheduling concerning the setting of appropriate due dates for a number of customer orders arriving over time. Most of the earlier publications on this subject assumed that the jobs are ready for processing simultaneously. This assumption is too restrictive for real-life production systems where jobs arrive at different times. We show that the problem with unequal ready times is NP-hard and develop fast heuristic algorithms for it, and exact algorithms for two special cases.  相似文献   

11.
This paper studies a bicriteria scheduling problem on a series-batching machine with objective of minimizing makespan and total completion time simultaneously. A series-batching machine is a machine that can handle up to b jobs in a batch and the completion time of all jobs in a batch is equal to the finishing time of the last job in the batch and the processing time of a batch is the sum of the processing times of jobs in the batch. In addition, there is a constant setup time s for each batch. For the problem we can find all Pareto optimal solutions in O(n2) time by a dynamic programming algorithm, where n denotes the number of jobs.  相似文献   

12.
We consider the scheduling problems arising when two agents, each with a family of jobs, compete to perform their respective jobs on a common unbounded parallel-batching machine. The batching machine can process any number of jobs simultaneously in a batch. The processing time of a batch is equal to the maximum processing time of the jobs in the batch. Two main categories of batch processing based on the compatibility of job families or agents are distinguished. In the case where job families are incompatible, jobs from different families cannot be placed in the same processing batch while all jobs can be placed in the same processing batch when job families are compatible. The goal is to find a schedule for all jobs of the two agents that minimizes the objective of one agent while keeping the objective of the other agent below or at a fixed value Q. Polynomial-time and pseudo-polynomial-time algorithms are provided to solve various combinations of regular objective functions for the scenario in which job families are either incompatible or compatible.  相似文献   

13.
Shachnai  Tamir 《Algorithmica》2002,32(4):651-678
Abstract. Modern computer systems distribute computation among several machines to speed up the execution of programs. Yet, setup and communication costs, as well as parallelism constraints, bound the number of machines that can share the execution of a given application, and the number of machines by which it can be processed simultaneously . We study the resulting scheduling problem, stated as follows. Given a set of n jobs and m uniform machines, assign the jobs to the machines subject to parallelism and machine allotment constraints, such that the overall completion time of the schedule (or makespan ) is minimized. Indeed, the multiprocessor scheduling problem (where each job can be processed by a single machine) is a special case of our problem; thus, our problem is strongly NP-hard. We present a (1+ α) -approximation algorithm for this problem, where α ∈ (0,1] depends on the minimal number of machine allotments and the minimal parallelism allowed for any job. Also, we show that when the maximal number of machines that can share the execution of a job is some fixed constant, our problem has a polynomial time approximation scheme ; for other special cases we give optimal polynomial time algorithms. Finally, through the relation of our problem to the classic preemptive scheduling problem on multiple machines, we shed some fresh light on what is known in scheduling folklore as the power of preemption.  相似文献   

14.
In this paper we consider the problem of scheduling n independent jobs on m parallel machines. If, while a machine is processing a job, a failure (unrecoverable interruption) occurs, the current job as well as subsequently scheduled jobs on that machine cannot be performed, and hence do not contribute to the overall revenue or throughput. The objective is to maximize the expected amount of work done before an interruption occurs. In this paper, we investigate the problem when failures are exponentially distributed. We show that the problem is NP-hard, and characterize a polynomially solvable special case. We then propose both an exact algorithm having pseudopolynomial complexity and a heuristic algorithm. A combinatorial upper bound is also proposed for the problem. Experimental results show the effectiveness of the heuristic approach.  相似文献   

15.
We address the two-stage assembly scheduling problem where there are m machines at the first stage and an assembly machine at the second stage. The objective is to schedule the available n jobs so that total completion time of all n jobs is minimized. Setup times are treated as separate from processing times. This problem is NP-hard, and therefore we present a dominance relation and propose three heuristics. The heuristics are evaluated based on randomly generated data. One of the proposed heuristics is known to be the best heuristic for the case of zero setup times while another heuristic is known to perform well for such problems. A new version of the latter heuristic, which utilizes the dominance relation, is proposed and shown to perform much better than the other two heuristics.  相似文献   

16.
We study a parallel machine scheduling problem with multiple unloading servers. After a machine completes processing one job, an unloading server is needed to remove the job from the machine. Only after unloading, the machine is available for processing the next job. The model is motivated by the milk run operations of a logistics company that faces limited unloading docks at the warehouse. Our interest is to minimize the total completion time of the jobs. We show that the shortest-processing-time-first (SPT) algorithm has a worst-case bound of 2. We also develop other improved heuristic algorithms as well as a branch-and-bound algorithm to solve the problem. Computational experiments show that our algorithms are efficient and effective.  相似文献   

17.
The problem of scheduling jobs on a single machine so as to minimize completion time variance (CTV) is considered. In this article, we have derived two dominance criteria and used them in the development of a new pseudopolynomial algorithm. This algorithm is an implicit enumeration scheme based on a binary branching strategy, with larger jobs fixed at early stages, and is superior to those of De, Ghosh and Wells [1] and Kubiak [2] in terms of computational complexity. It is observed that this algorithm is very good when the job processing times are quite heterogeneous, while the algorithm of De, Ghosh and Wells [1] is excellent for homogeneous processing times. By making use of these contrasting merits, another pseudopolynomial algorithm is then proposed. Results of extensive numerical investigation on the performances of the algorithms are also reported.  相似文献   

18.
In this paper, we study the problem of minimizing the weighted sum of makespan and total completion time in a permutation flowshop where the processing times are supposed to vary according to learning effects. The processing time of a job is a function of the sum of the logarithms of the processing times of the jobs already processed and its position in the sequence. We present heuristic algorithms, which are modified from the optimal schedules for the corresponding single machine scheduling problem and analyze their worst-case error bound. We also adopt an existing algorithm as well as a branch-and-bound algorithm for the general m-machine permutation flowshop problem. For evaluation of the performance of the algorithms, computational experiments are performed on randomly generated test problems.  相似文献   

19.
We consider the single machine multi-operation jobs scheduling problem to minimize the number of tardy jobs. Each job consists of several operations that belong to different families. In a schedule, each family of job operations may be processed in batches with each batch incurring a setup time. A job completes when all of its operations have been processed. The objective is to minimize the number of tardy jobs. In the literature, this problem has been proved to be strongly NP-hard for arbitrary due-dates. We show in this paper that the problem remains strongly NP-hard even when the due-dates are common and all jobs have the same processing time.  相似文献   

20.
We study the problem of batching and scheduling n jobs in a flow shop comprising m, m≥2, machines. Each job has to be processed on machines 1,…,m in this order. Batches are formed on each machine. A machine dependent setup time precedes the processing of each batch. Jobs of the same batch are processed on each machine sequentially so that the processing time of a batch is equal to the sum of the processing times of the jobs contained in it. Jobs of the same batch formed on machine l become available for a downstream operation on machine l+1 at the same time when the processing of the last job of the batch on machine l has been finished. The objective is to minimize maximum job completion time. We establish several properties of an optimal schedule and develop polynomial time algorithms for important special cases. They are improvements over the existing methods with regard to their generality and time efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号