首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we propose the use of model‐based receding horizon control to enable a wind farm to provide secondary frequency regulation for a power grid. The controller is built by first proposing a time‐varying one‐dimensional wake model, which is validated against large eddy simulations of a wind farm at startup. This wake model is then used as a plant model for a closed‐loop receding horizon controller that uses wind speed measurements at each turbine as feedback. The control method is tested in large eddy simulations with actuator disk wind turbine models representing an 84‐turbine wind farm that aims to track sample frequency regulation reference signals spanning 40 min time intervals. This type of control generally requires wind turbines to reduce their power set points or curtail wind power output (derate the power output) by the same amount as the maximum upward variation in power level required by the reference signal. However, our control approach provides good tracking performance in the test system considered with only a 4% derate for a regulation signal with an 8% maximum upward variation. This performance improvement has the potential to reduce the opportunity cost associated with lost revenue in the bulk power market that is typically associated with providing frequency regulation services. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Junji Kondoh 《风能》2010,13(6):529-541
Output power fluctuation of high penetration of wind power causes demand and supply imbalance in electric power systems and results in frequency deviation if the fluctuation is not fully compensated by other regulable power plants. In Japan, some electric utilities have started to accept only the wind farms which disconnect and give up generating power during light‐load periods with less adjustable reserve. Otherwise, wind farms are required to employ battery energy storage systems (BESSs) to charge the generated power during the light‐load periods. Instead of these uneconomical solutions, this paper proposes autonomous frequency regulation by controllable loads such as electric water heaters (EWHs). In the paper, the acceptable increase of wind power generation by the proposed load control has been evaluated quantitatively in the power system of the Hokkaido Island in Japan. The result indicates that the acceptable increase of wind power generation goes from 250 to 675 MW by applying the proposed autonomous frequency regulation on all EWHs, and the total cost to implement the autonomous frequency regulation on the EWHs is around 1/26 compared with a solution using BESSs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This work describes the results from wind tunnel experiments performed to maximize wind plant total power output using wake steering via closed loop yaw angle control. The experimental wind plant consists of nine turbines arranged in two different layouts; both are two dimensional arrays and differ in the positioning of the individual turbines. Two algorithms are implemented to maximize wind plant power: Log-of-Power Extremum Seeking Control (LP-ESC) and Log-of-Power Proportional Integral Extremum Seeking Control (LP-PIESC). These algorithms command the yaw angles of the turbines in the upstream row. The results demonstrate that the algorithms can find the optimal yaw angles that maximize total power output. The LP-PIESC reached the optimal yaw angles much faster than the LP-ESC. The sensitivity of the LP-PIESC to variations in free stream wind speed and initial yaw angles is studied to demonstrate robustness to variations in wind speed and unknown yaw misalignment.  相似文献   

4.
This paper investigates the correlation between the frequency components of the wind speed Power Spectral Density. The results extend an already existing power fluctuation model that can simulate power fluctuations of wind power on areas up to several kilometers and for time scales up to a couple of hours, taking into account the spectral correlation between different wind turbines. The modelling is supported by measurements from two large wind farms, namely Nysted and Horns Rev. Measurements from individual wind turbines and meteorological masts are used. Finally, the models are integrated into an aggregated model which is used for estimating some electrical parameters as power ramps and reserves requirements, showing a quite good agreement between simulations and measurement. The comparison with measurements generally show that the inclusion of the correlation between low frequency components is an improvement, but the effect is relatively small. The effect of including the low frequency components in the model is much more significant. Therefore, that aggregated model is useful in the power system planning and operation, e.g. regarding load following and regulation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Reactive power management and control of distant large-scale offshore wind power farms connected to the grid through high-voltage alternating current (HVAC) transmission cable are presented in this paper. The choice of the transmission option is based on the capacity of the considered wind farm (WF) and the distance to the onshore grid connection point. The WF is made up of identical doubly-fed induction generators (DFIGs). Modelling and improved analysis of the effective reactive power capability of DFIGs as affected by various operational constraints are provided. In addition, modelling and analysis of the reactive power demands, balance, and control are presented. The minimum capacity and reactive power settings for reactive power compensation required for the system are determined. Possibility of unity power factor operation suggested by the German electricity association (VDEW) is investigated. A summary of the main outcomes of the work presented in this paper is provided in the conclusions section.  相似文献   

6.
The optimization of wind farms with respect to spatial layout is addressed experimentally. Wake effects within wind turbine farms are well known to be deleterious in terms of power generation and structural loading, which is corroborated in this study. Computational models are the predominant tools in the prediction of turbine‐induced flow fields. However, for wind farms comprising hundreds of turbines, reliability of the obtained numerical data becomes a growing concern with potentially costly consequences. This study pursues a systematic complementary theoretical, experimental and numerical study of variations in generated power with turbine layout of an 80 turbine large wind farm. Wake effects within offshore wind turbine arrays are emulated using porous discs mounted on a flat plate in a wind tunnel. The adopted approach to reproduce experimentally individual turbine wake characteristics is presented, and drag measurements are argued to correctly capture the variation in power generation with turbine layout. Experimental data are juxtaposed with power predictions using ANSYS WindModeller simulation suite. Although comparison with available wind farm power output data has been limited, it is demonstrated nonetheless that this approach has potential for the validation of numerical models of power loss due to wake effects or even to make a direct physical prediction. The approach has even indicated useful data for the improvement of the physics within numerical models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
As the penetration of wind energy in worldwide electrical utility grids increases, there is a growing interest in the provision of active power control (APC) services from wind turbines and power plants to aid in maintaining grid stability. Recent research has focused on the design of active power controllers for wind turbines that can provide a range of APC services including inertial, primary frequency and secondary frequency control. An important consideration for implementing these controllers in practice is assessing their impact on the lifetime of wind turbine components. In this paper, the impact on the structural loads of a wind turbine providing a power reserve is explored by performing a load suite analysis for several torque‐based control strategies. Power reserve is required for providing those APC services that require the ability of the wind turbine to supply an increase in power. To study this, we performed a load suite on a simulated model of a research turbine located at the National Wind Technology Center at the National Renewable Energy Laboratory. Analysis of the results explores the effect of the different reserve strategies on turbine loading. In addition, field‐test data from the turbine itself are presented to augment and support the findings from the simulation study results. Results indicate that all power‐reserve strategies tend to decrease extreme loads and increase pitch actuation. Fatigue loads tend to be reduced in faster winds and increased in slower winds, but are dependent on reserve‐controller design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
大规模光伏发电并网致使电力系统面临惯量减小与调频能力不足。文章在备用一定有功功率的基础上,提出有功功率-频率下垂控制策略,通过修正逆变器的原有控制结构,实现光伏发电主动参与电网频率一次调节。考虑一次频率调节偏移与越界等问题,提出自适应电网侧AGC不同控制模式(定频率控制模式、定联络线功率控制模式以及联络线功率频率偏差控制模式)的二次频率调节控制策略,进而实现频率的无差调节。最后,基于PSCAD/EMTDC仿真平台验证了控制策略的有效性与可行性。  相似文献   

9.
The stability of the electrical grid depends on enough generators being able to provide appropriate responses to sudden losses in generation capacity, increases in power demand or similar events. Within the United States, wind turbines largely do not provide such generation support, which has been acceptable because the penetration of wind energy into the grid has been relatively low. However, frequency support capabilities may need to be built into future generations of wind turbines to enable high penetration levels over approximately 20%. In this paper, we describe control strategies that can enable power reserve by leaving some wind energy uncaptured. Our focus is on the control strategies used by an operating turbine, where the turbine is asked to track a power reference signal supplied by the wind farm operator. We compare the strategies in terms of their control performance as well as their effects on the turbine itself, such as the possibility for increased loads on turbine components. It is assumed that the wind farm operator has access to the necessary grid information to generate the power reference provided to the turbine, and we do not simulate the electrical interaction between the turbine and the utility grid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
海上风电场运行维护成本高,而其尾流效应影响更加突出,不但会影响风电场的发电效率,还会增大风电场内机组的疲劳载荷,增加运维成本。文章针对基于疲劳均匀的海上风电场主动尾流控制展开研究,通过GH-Bladed软件计算建立了风电机组在典型控制工况下关键零部件的疲劳损伤量数据库。其中的工况包括最大功率追踪、桨距角控制和偏航控制3种,并引用了量子粒子群算法,通过变桨和偏航两种方法进行优化控制,以实现海上风电场发电量提升和风电机组疲劳均匀的多目标主动尾流优化控制策略,降低海上风电场运维成本。仿真结果表明了所提出控制方法的可行性。  相似文献   

11.
提出了一种新的适用于海上风电场并网的新型高压直流输电(Voltage Source Converter based HVDC,VSC-HVDC)系统的比例谐振(Proportional Resonant,PR)控制策略。该方法充分利用PR控制器能够在αβ坐标系下对交流输入信号无静差控制的特点,将矢量控制策略下的有功电流和无功电流分量转换到αβ坐标系下进行调节,实现风电场和电网侧换流器维持直流电压稳定以及有功、无功功率的解耦控制。与常用的双闭环PI控制相比,该策略无需多次坐标变换和前馈解耦控制,且易于实现对系统谐波电流的补偿,降低了实现难度,提高了系统的鲁棒性和并网电能质量,为海上风电场并网VSC-HVDC系统提供了一种优化的控制方案。  相似文献   

12.
The maintenance of wind farms is one of the major factors affecting their profitability. During preventive maintenance, the shutdown of wind turbines causes downtime energy losses. The selection of when and which turbines to maintain can significantly impact the overall downtime energy loss. This paper leverages a wind farm power generation model to calculate downtime energy losses during preventive maintenance for an offshore wind farm. Wake effects are considered to accurately evaluate power output under specific wind conditions. In addition to wind speed and direction, the influence of wake effects is an important factor in selecting time windows for maintenance. To minimize the overall downtime energy loss of an offshore wind farm caused by preventive maintenance, a mixed-integer nonlinear optimization problem is formulated and solved by the genetic algorithm, which can select the optimal maintenance time windows of each turbine. Weather conditions are imposed as constraints to ensure the safety of maintenance personnel and transportation. Using the climatic data of Cape Cod, Massachusetts, the schedule of preventive maintenance is optimized for a simulated utility-scale offshore wind farm. The optimized schedule not only reduces the annual downtime energy loss by selecting the maintenance dates when wind speed is low but also decreases the overall influence of wake effects within the farm. The portion of downtime energy loss reduced due to consideration of wake effects each year is up to approximately 0.2% of the annual wind farm energy generation across the case studies—with other stated opportunities for further profitability improvements.  相似文献   

13.
This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects called the FLOw Redirection and Induction in Steady‐state (FLORIS) model. The FLORIS model predicts the steady‐state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limited number of parameters that are estimated based on turbine electrical power production data. In high‐fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Reactive power control of wind farms for voltage control applications   总被引:1,自引:0,他引:1  
In the last few years, there is a strong trend towards decentralised production and supply, leading to a situation where a growing number of small and medium size producers will be connected to energy networks. But at the same time, the power quality of the generation must be ensured and this means that the electrical parameters of the distribution network have to be maintained within their upper and lower limits. Therefore, new problems related to the management and operation of energy transfer and distribution and to the efficient distribution of renewable energy in the grids are actually arising. Hence, it is reasonable to think that dispersed generation (wind energy generation in this paper) should start to take part in the control of electric variables, and in particular, in reactive power control which is directly related to the voltage level control of distribution networks. This paper presents a control strategy developed for the reactive power regulation of wind farms made up with double fed induction generators, in order to contribute to the voltage regulation of the electrical grid to which farms are connected.  相似文献   

15.
A novel control approach is proposed to optimize the fatigue distribution of wind turbines in a large‐scale offshore wind farm on the basis of an intelligent agent theory. In this approach, each wind turbine is considered to be an intelligent agent. The turbine at the farm boundary communicates with its neighbouring downwind turbines and organizes them adaptively into a wind delivery group along the wind direction. The agent attributes and the event structure are designed on the basis of the intelligent agent theory by using the unified modelling language. The control strategy of the intelligent agent is studied using topology models. The reference power of an individual wind turbine from the wind farm controller is re‐dispatched to balance the turbine fatigue in the power dispatch intervals. In the fatigue optimization, the goal function is to minimize the standard deviation of the fatigue coefficient for every wind turbine. The optimization is constrained such that the average fatigue for every turbine is smaller than what would be achieved by conventional dispatch and such that the total power loss of the wind farm is restricted to a few percent of the total power. This intelligent agent control approach is verified through the simulation of wind data from the Horns Rev offshore wind farm. The results illustrate that intelligent agent control is a feasible way to optimize fatigue distribution in wind farms, which may reduce the maintenance frequency and extend the service life of large‐scale wind farms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
由于风机的无功耗变,电网电压稳定性随着风力渗透的增加而降低.针对风电场接入的配电网系统无功优化调度问题,本文提出了一种基于ADMM算法的两级无功优化调度方法.与现有的无功优化控制方法相比,该方法采用两阶段优化结构实现分布式无功优化调度.此外,在分区概念下,不需要一致性协议来解决优化问题.该方法在控制设计中也考虑了各个风...  相似文献   

17.
This paper proposes a method for real‐time estimation of the possible power of an offshore wind power plant when it is down‐regulated. The main purpose of the method is to provide an industrially applicable estimate of the possible (or reserve) power. The method also yields a real‐time power curve, which can be used for operation monitoring and wind farm control. Currently, there is no verified approach regarding estimation of possible power at wind farm scale. The key challenge in possible power estimation at wind farm level is to correct the reduction in wake losses, which occurs due to the down‐regulation. Therefore, firstly, the 1‐second wind speeds at the upstream turbines are estimated, since they are not affected by the reduced wake. Then they are introduced into the wake model, adjusted for the same time resolution, to correct the wake losses. To mitigate the uncertainties due to dynamic changes within the large offshore wind farms, the algorithm is updated at every turbine downstream, considering the local axial and lateral turbulence effects. The PossPOW algorithm uses only 1‐Hz turbine data as inputs and provides possible power output. The algorithm is trained and validated in Thanet and Horns Rev‐I offshore wind farms under nominal operation, where the turbines are following the optimum power curve. The results indicate that the PossPOW algorithm performs well; in the Horns Rev‐I wind farm, the strict power system requirements are met more than 70% of the time over the 24‐hour data set on which the algorithm was evaluated.  相似文献   

18.
A wind turbine generator (WTG) system's output is not constant and fluctuates depending on wind conditions. Fluctuating power causes frequency deviations and adverse effects to an isolated power system when large output power from WTG systems is penetrated in the power system. This paper presents an output power control methodology of a WTG for frequency control using a load power estimator. The load power is estimated by a disturbance observer, and the output power command of the WTG is determined according to the estimated load. Besides, the WTG can also be controlled during wind turbulence since the output power command is determined by considering wind conditions. The reduction of the power system frequency deviation by using the WTG can be achieved by the proposed method. The effectiveness of the proposed method is validated by numerical simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
20.
This article deals with the influence of yawed inflow conditions on the performance of a single generic 2.4MW wind turbine. It presents the results of studies performed at the Institute of Aerodynamics and Gas Dynamics by means of computational fluid dynamics , using a fully meshed wind turbine with all boundary layers being resolved. The block‐structured flow solver FLOWer is used; a dual‐time stepping method for temporal discretization and a second‐order Jameson–Schmidt–Turkel method for the calculation of the convective fluxes are applied. All simulations are carried out using a detached eddy simulation approach. In detail, two different wind speeds and a yaw angle range between ?50° and +50° are evaluated in the paper. Based on these data, it is shown that the reduction of power output follows a cosine to the power of X function of the yaw angle. Furthermore, the growing azimuthal non‐uniformity of the load distributions with increasing yaw angle magnitude is analysed by spanwise load distributions. As a central influence on the load distributions, the advancing and retreating blade effect is identified. Moreover, the deflection of the wake as a result of the inflow is investigated, and the deflection angles are compared with a modelling approach. A connection line between wake deflection and load asymmetry is drawn. The results are of particular importance for wind park situations with downstream turbines facing the distorted inflow created from upstream ones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号