首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Zhang  RM Haas  AM Leone 《Analytical chemistry》2012,84(14):6088-6096
The development of lipid nanoparticle (LNP) based small interfering RNA (siRNA) therapeutics presents unique pharmaceutical and regulatory challenges. In contrast to small molecule drugs that are highly pure and well-defined, LNP drug products can exhibit heterogeneity in size, composition, surface property, or morphology. The potential for batch heterogeneity introduces a complexity that must be confronted in order to successfully develop and ensure quality in LNP pharmaceuticals. Currently, there is a lack of scientific knowledge in the heterogeneity of LNPs as well as high-resolution techniques that permit this evaluation. This article reports a size-exclusion chromatography (SEC) method that permits the high-resolution analysis of LNP size distribution in its native solution condition. When coupled with multiple detection systems including UV-vis, multi-angle light scattering, and refractive index, on-line characterization of the distributions in size, molecular weight, and siRNA cargo loading of LNPs could be achieved. Six LNPs with sizes in the rang of 60-140 nm were evaluated and it was found that the SEC separation is efficient, highly reproducible, and can be broadly applied to a diverse range of LNPs. A comparison between the current SEC method and asymmetric field flow fractionation (FFF) shows that the current method provides similar size distribution results on LNPs compared to FFF. Two representative LNPs with similar bulk properties were evaluated in-depth using the SEC method along with two other sizing techniques-dynamic light scattering and cryo-TEM. Profound differences in batch polydispersity were observed between them. Despite the similarity in the particle assembly process, it was found that one LNP (A) possessed a narrow size and molecular weight distribution while the other (B) was polydisperse. The present results suggest that LNP drug products are highly complex and diverse in nature, and care should be taken in examining and understanding them to ensure quality and consistency. The method developed here can not only serve as a method for understanding LNP product property, permitting control on product quality, but also could serve as a potential manufacturing method for product purification. Understandings obtained in this work can help to facilitate the development of LNPs as a well-defined pharmaceutical product.  相似文献   

2.
Using mRNA to produce therapeutic proteins is a promising approach to treat genetic diseases. However, systemically delivering mRNA to cell types besides hepatocytes remains challenging. Fast identification of nanoparticle delivery (FIND) is a DNA barcode‐based system designed to measure how over 100 lipid nanoparticles (LNPs) deliver mRNA that functions in the cytoplasm of target cells in a single mouse. By using FIND to quantify how 75 chemically distinct LNPs delivered mRNA to 28 cell types in vivo, it is found that an LNP formulated with oxidized cholesterol and no targeting ligand delivers Cre mRNA, which edits DNA in hepatic endothelial cells and Kupffer cells at 0.05 mg kg?1. Notably, the LNP targets liver microenvironmental cells fivefold more potently than hepatocytes. The structure of the oxidized cholesterols added to the LNP is systematically varied to show that the position of the oxidative modification may be important; cholesterols modified on the hydrocarbon tail associated with sterol ring D tend to outperform cholesterols modified on sterol ring B. These data suggest that LNPs formulated with modified cholesterols can deliver gene‐editing mRNA to the liver microenvironment at clinically relevant doses.  相似文献   

3.
Clinical mRNA delivery remains challenging, in large part because how physiology alters delivery in vivo remains underexplored. For example, mRNA delivered by lipid nanoparticles (LNPs) is being considered to treat inflammation, but whether inflammation itself changes delivery remains understudied. Relationships between immunity, endocytosis, and mRNA translation lead to hypothesize that toll-like receptor 4 (TLR4) activation reduced LNP-mediated mRNA delivery. Therefore, LNP uptake, endosomal escape, and mRNA translation with and without TLR4 activation are quantified. In vivo DNA barcoding is used to discover a novel LNP that delivers mRNA to Kupffer cells at clinical doses; unlike most LNPs, this LNP does not preferentially target hepatocytes. TLR4 activation blocks mRNA translation in all tested cell types, without reducing LNP uptake; inhibiting TLR4 or its downstream effector protein kinase R improved delivery. The discrepant effects of TLR4 on i) LNP uptake and ii) translation suggests TLR4 activation can “override” LNP targeting, even after mRNA is delivered into target cells. Given near-future clinical trials using mRNA to modulate inflammation, this highlights the need to understand inflammatory signaling in on- and off-target cells. More generally, this suggests an LNP which delivers mRNA to one inflammatory disease may not deliver mRNA to another.  相似文献   

4.
T cells help regulate immunity, which makes them an important target for RNA therapies. While nanoparticles carrying RNA have been directed to T cells in vivo using protein‐ and aptamer‐based targeting ligands, systemic delivery to T cells without targeting ligands remains challenging. Given that T cells endocytose lipoprotein particles and enveloped viruses, two natural systems with structures that can be similar to lipid nanoparticles (LNPs), it is hypothesized that LNPs devoid of targeting ligands can deliver RNA to T cells in vivo. To test this hypothesis, the delivery of siRNA to 9 cell types in vivo by 168 nanoparticles using a novel siGFP‐based barcoding system and bioinformatics is quantified. It is found that nanomaterials containing conformationally constrained lipids form stable LNPs, herein named constrained lipid nanoparticles (cLNPs). cLNPs deliver siRNA and sgRNA to T cells at doses as low as 0.5 mg kg?1 and, unlike previously reported LNPs, do not preferentially target hepatocytes. Delivery occurs via a chemical composition‐dependent, size‐independent mechanism. These data suggest that the degree to which lipids are constrained alters nanoparticle targeting, and also suggest that natural lipid trafficking pathways can promote T cell delivery, offering an alternative to active targeting approaches.  相似文献   

5.
Lipid nanoparticles (LNPs) are the most advanced nonviral platforms for small interfering RNA (siRNA) delivery that are clinically approved. These LNPs, based on ionizable lipids, are found in the liver and are now gaining much attention in the field of RNA therapeutics. The previous generation of ionizable lipids varies in linker moieties, which greatly influences in vivo gene silencing efficiency. Here novel ionizable amino lipids based on the linker moieties such as hydrazine, hydroxylamine, and ethanolamine are designed and synthesized. These lipids are formulated into LNPs and screened for their efficiency to deliver siRNAs into leukocytes, which are among the hardest to transfect cell types. Two potent lipids based on their in vitro gene silencing efficiencies are also identified. These lipids are further evaluated for their biodistribution profile, efficient gene silencing, liver toxicity, and potential immune activation in mice. A robust gene silencing is also found in primary lymphocytes when one of these lipids is formulated into LNPs with a pan leukocyte selective targeting agent (β7 integrin). Taken together, these lipids have the potential to open new avenues in delivering RNAs into leukocytes.  相似文献   

6.
B lymphocytes regulate several aspects of immunity including antibody production, cytokine secretion, and T‐cell activation; moreover, B cell misregulation is implicated in autoimmune disorders and cancers such as multiple sclerosis and non‐Hodgkin's lymphomas. The delivery of messenger RNA (mRNA) into B cells can be used to modulate and study these biological functions by means of inducing functional protein expression in a dose‐dependent and time‐controlled manner. However, current in vivo mRNA delivery systems fail to transfect B lymphocytes and instead primarily target hepatocytes and dendritic cells. Here, the design, synthesis, and biological evaluation of a lipid nanoparticle (LNP) system that can encapsulate mRNA, navigate to the spleen, transfect B lymphocytes, and induce more than 60 pg of protein expression per million B cells within the spleen is described. Importantly, this LNP induces more than 85% of total protein production in the spleen, despite LNPs being observed transiently in the liver and other organs. These results demonstrate that LNP composition alone can be used to modulate the site of protein induction in vivo, highlighting the critical importance of designing and synthesizing new nanomaterials for nucleic acid delivery.  相似文献   

7.
The utility of messenger RNA (mRNA) as a therapy is gaining a broad interest due to its potential for addressing a wide range of diseases, while effective delivery of mRNA molecules to various tissues still poses a challenge. This study reports on the design and characterization of new ionizable amino‐polyesters (APEs), synthesized via ring opening polymerization (ROP) of lactones with tertiary amino‐alcohols that enable tissue and cell type selective delivery of mRNA. With a diverse library of APEs formulated into lipid nanoparticles (LNP), structure‐activity parameters crucial for efficient transfection are established and APE‐LNPs are identified that can preferentially home to and elicit effective mRNA expression with low in vivo toxicity in lung endothelium, liver hepatocytes, and splenic antigen presenting cells, including APE‐LNP demonstrating nearly tenfold more potent systemic mRNA delivery to the lungs than vivo‐jetPEI. Adopting tertiary amino‐alcohols to initiate ROP of lactones allows to control polymer molecular weight and obtain amino‐polyesters with narrow molecular weight distribution, exhibiting batch‐to‐batch consistency. All of which highlight the potential for clinical translation of APEs for systemic mRNA delivery and demonstrate the importance of employing controlled polymerization in the design of new polymeric nanomaterials to improve in vivo nucleic acid delivery.  相似文献   

8.
Fabricating bio-latex colloids with core–shell nanostructure is an effective method for obtaining films with enhanced mechanical characteristics. Nano-sized lignin is rising as a class of sustainable nanomaterials that can be incorporated into latex colloids. Fundamental knowledge of the correlation between surface chemistry of lignin nanoparticles (LNPs) and integration efficiency in latex colloids and from it thermally processed latex films are scarce. Here, an approach to integrate self-assembled nanospheres of allylated lignin as the surface-activated cores in a seeded free-radical emulsion copolymerization of butyl acrylate and methyl methacrylate is proposed. The interfacial-modulating function on allylated LNPs regulates the emulsion polymerization and it successfully produces a multi-energy dissipative latex film structure containing a lignin-dominated core (16% dry weight basis). At an optimized allyl-terminated surface functionality of 1.04 mmol g−1, the LNPs-integrated latex film exhibits extremely high toughness value above 57.7 MJ m−3. With multiple morphological and microstructural characterizations, the well-ordered packing of latex colloids under the nanoconfinement of LNPs in the latex films is revealed. It is concluded that the surface chemistry metrics of colloidal cores in terms of the abundance of polymerization-modulating anchors and their accessibility have a delicate control over the structural evolution of core–shell latex colloids.  相似文献   

9.
This study introduces multifunctional lipid nanoparticles (LNPs), mimicking the structure and compositions of low‐density lipoproteins, for the tumor‐targeted co‐delivery of anti‐cancer drugs and superparamagnetic nanocrystals. Paclitaxel (4.7 wt%) and iron oxide nanocrystals (6.8 wt%, 11 nm in diameter) are co‐encapsulated within folate‐functionalized LNPs, which contain a cluster of nanocrystals with an overall diameter of about 170 nm and a zeta potential of about ‐40 mV. The folate‐functionalized LNPs enable the targeted detection of MCF‐7, human breast adenocarcinoma expressing folate receptors, in T2‐weighted magnetic resonance images as well as the efficient intracellular delivery of paclitaxel. Paclitaxel‐free LNPs show no significant cytotoxicity up to 0.2 mg mL?1, indicating the excellent biocompatibility of the LNPs for intracellular drug delivery applications. The targeted anti‐tumor activities of the LNPs in a mouse tumor model suggest that the low‐density lipoprotein‐mimetic LNPs can be an effective theranostic platform with excellent biocompatibility for the tumor‐targeted co‐delivery of various anti‐cancer agents.  相似文献   

10.
With the recent FDA approval of the first siRNA‐derived therapeutic, RNA interference (RNAi)‐mediated gene therapy is undergoing a transition from research to the clinical space. The primary obstacle to realization of RNAi therapy has been the delivery of oligonucleotide payloads. Therefore, the main aims is to identify and describe key design features needed for nanoscale vehicles to achieve effective delivery of siRNA‐mediated gene silencing agents in vivo. The problem is broken into three elements: 1) protection of siRNA from degradation and clearance; 2) selective homing to target cell types; and 3) cytoplasmic release of the siRNA payload by escaping or bypassing endocytic uptake. The in vitro and in vivo gene silencing efficiency values that have been reported in publications over the past decade are quantitatively summarized by material type (lipid, polymer, metal, mesoporous silica, and porous silicon), and the overall trends in research publication and in clinical translation are discussed to reflect on the direction of the RNAi therapeutics field.  相似文献   

11.
Fol-8Col is a novel recombinant collagen-like protein incorporated with foldon sequences derived from the native T4 phage fibritin. In this paper, we examined the potential of using Fol-8Col as scaffold for bone tissue engineering. Circular dichroism (CD) spectra indicate that the triple helix structure of Fol-8Col exists at temperatures ranging from 4 to 40 °C. Lactate dehydrogenase assay results and live/death cell staining of osteoblast-like MC3T3-E1 cells, cultivated on Fol-8Col for 24 h, showed evidence of cell cytocompatibility comparable to that of native type I collagen. Attachment and spreading of osteoblast-like MC3T3-E1 cells seeded on Fol-8Col were studied by immunofluorescence staining of cell nuclei, vinculin, and F-actin. Intensive focal adhesion patches and an elongated cortical actin cytoskeleton were observed after 24 hours’ cultivation. Proliferation assays of MC3T3-E1 cells cultivated on Fol-8Col for 2 weeks revealed no consistent differences in rate and pattern compared to growth on type I collagen. Alkaline phosphatase activity assay and osteogenic gene expression, detected by RT-PCR, evaluated the osteogenic differentiation of MC3T3-E1 cells on Fol-8Col. This study shows that Fol-8Col, with a triple helix structure, has good potential for application in bone regeneration as a replacement for native collagen, thereby reducing the risk of contamination.  相似文献   

12.
A new peptide scaffold was made by mixing pure RADA16 (Ac-RADARADARADARADA-CONH2) and designer peptide RGDA16 (Ac-RADARGDARADARGDA-CONH2) solutions, and investigate any effect on attachment, spreading and proliferation of pre-osteoblast (MC3T3-E1). The peptides, RADA16 and RGDA16, were custom-synthesized. They were solubilized in deionized water at a concentration of 10 mg/ml (1% w/v), the RGDA16 peptide solution was mixed 1:1 with RADA16 solution and a new peptide solution RGDAmix was produced. The RGDAmix and RADA16 solution were directly loaded in 96-well plates and cover slips, and two different peptide scaffolds were formed with the addition of maintenance medium (α-MEM) in several minutes. About 1.0 × 104 MC3T3-E1 cells were seeded on each hydrogel scaffold, and then the cell morphological changes were observed using a fluorescence microscope at 1 h, 3 h and 24 h timepoint, respectively. Cell attachment was evaluated 1 h, 3 h and 24 h after cell seeding and cell proliferation was determined 4d, 7d and 14d after cell seeding. The RGDAmix scaffold significantly promoted the initial cell attachment compared with the RADA16 scaffold. MC3T3-E1 cells adhered and spread well on both scaffolds, however, cells spread better on the RGDAmix scaffold than on the RADA16 scaffold. Cell proliferation was greatly stimulated when cultured on RGDAmix scaffold. The RGD sequence contained peptide scaffold RGDAmix significantly enhances MC3T3-E1 cells attachment, spreading and proliferation.  相似文献   

13.
Inflammation and lipid abnormalities are two important risk factors for cardiovascular disease in hemodialysis (HD) patients. The present study was designed to investigate the effects of flaxseed consumption on systemic inflammation and serum lipid profile in HD patients with lipid abnormalities. This was an unblinded, randomized clinical trial. Thirty HD patients with dyslipidemia (triglyceride >200 mg/dL and/or high‐density lipoprotein‐cholesterol (HDL‐C) <40 mg/dL) were randomly assigned to either a flaxseed or control group. Patients in the flaxseed group received 40 g/day ground flaxseed for 8 weeks, whereas patients in the control group received their usual diet, without any flaxseed. At baseline and at the end of week 8, 7 mL of blood was collected after a 12‐ to 14‐hour fast and serum concentrations of triglyceride, total cholesterol, low‐density lipoprotein‐cholesterol (LDL‐C), HDL‐C, and C‐reactive protein (CRP) were measured. Serum concentrations of triglyceride (P < 0.01), total cholesterol (P < 0.01), LDL‐C (P < 0.01), and CRP (P < 0.05) decreased significantly in the flaxseed group at the end of week 8 compared with baseline, whereas serum HDL‐C showed a significant increase (P < 0.01). These changes in the flaxseed group were significant in comparison with the control group. The study indicates that flaxseed consumption improves lipid abnormalities and reduces systemic inflammation in HD patients with lipid abnormalities.  相似文献   

14.
V ions showed high cytotoxicity for mouse fibroblast L929, osteoblastic MC3T3-E1, and macrophage-like J774.1 cells compared with Pb, Cu, Ni, Co, Zn, and Mo ions. The quantities of metal ions incorporated into the L929 and MC3T3-E1 cells increased with increasing metal concentration in the medium, depending on the metal ion type. In particular, the quantities of V incorporated into the cells were markedly higher than those of other metals. It was suggested that the cytotoxicity of a metal ion changes with the quantity of the metal ion incorporated into cells. It was also considered that V ions are incorporated into cells through xanthine derived from fetal bovine serum by high-performance liquid chromatography (HPLC). The strong interaction of Co, Ni and Mo with amino acids was analyzed by HPLC. The rate of increase of nitric oxide (NO) concentration released with the activation of the mouse macrophage-like J774.1 cells increased at a concentration of V ions ten times lower than that of Ni ions. The release of the cytokine tumor necrosis factor-α (TNF-α) from the J774.1 cells started at approximately 0.5 ppm V; interleukin-6 (IL-6) and transforming growth factor-β (TGF-β) showed a marked increase in the rate of increase at more than 1 ppm V. No increase in the concentration of IL-1α, IL-8, IL-15 or granulocyte macrophage-colony stimulating factor (GM-CSF) was observed for V and Ni ions.  相似文献   

15.
A new approach is described for delivering small interfering RNA (siRNA) into cancer cells by noncovalently complexing unmodified siRNA with pristine single-walled carbon nanotubes (SWCNTs). The complexes were prepared by simple sonication of pristine SWCNTs in a solution of siRNA, which then served both as the cargo and as the suspending agent for the SWCNTs. When complexes containing siRNA targeted to hypoxia-inducible factor 1 alpha (HIF-1α) were added to cells growing in serum containing culture media, there was strong specific inhibition of cellular HIF-1 activity. The ability to obtain a biological response to SWCNT/siRNA complexes was seen in a wide variety of cancer cell types. Moreover, intratumoral administration of SWCNT- HIF-1α siRNA complexes in mice bearing MiaPaCa-2/HRE tumors significantly inhibited the activity of tumor HIF-1α. As elevated levels of HIF-1α are found in many human cancers and are associated with resistance to therapy and decreased patient survival, these results imply that SWCNT/siRNA complexes may have value as therapeutic agents. These two authors contributed equally to the design and implementation of this study.  相似文献   

16.
The design of stimuli-responsive lignin nanoparticles (LNPs) for advanced applications has hitherto been limited to the preparation of lignin-grafted polymers in which usually the lignin content is low (<25 wt.%) and its role is debatable. Here, the preparation of O2-responsive LNPs exceeding 75 wt.% in lignin content is shown. Softwood Kraft lignin (SKL) is coprecipitated with a modified SKL fluorinated oleic acid ester (SKL-OlF) to form colloidal stable hybrid LNPs (hy-LNPs). The hy-LNPs with a SKL-OlF content ranging from 10 to 50 wt.% demonstrated a reversible swelling behavior upon O2/N2 bubbling, increasing their size – ≈35% by volume – and changing their morphology from spherical to core-shell. Exposition of hy-LNPs to O2 bubbling promotes a polarity change on lignin-fluorinated oleic chains, and consequently their migration from the inner part to the surface of the particle, which not only increases the particle size but also endows hy-LNPs with enhanced stability under harsh conditions (pH < 2.5) by the hydration barrier effect. Furthermore, it is also demonstrated that these new stimuli-responsive particles as gas tunable nanoreactors for the synthesis of gold nanoparticles. Combining a straightforward preparation with their enhanced stability and responsiveness to O2 gas these new LNPs pave the way for the next generation of smart lignin-based nanomaterials.  相似文献   

17.
Abstract

Aquaporin (AQP) based biomimetic membranes have attracted considerable attention for their potential water purification applications. In this paper, AQP1 incorporated biomimetic membranes were prepared and characterized. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), infrared absorption spectroscopy, fluorescence microscopy, and contact angle measurements. The nanofiltration performance of the AQP1 incorporated membranes was investigated at 4 bar by using 2 g l?1 NaCl as feed solution. Lipid mobility plays an important role in the performance of the AQP1 incorporated supported lipid bilayer (SLB) membranes. We demonstrated that the lipid mobility is successfully tuned by the addition of monoolein (MO). Through in situ AFM and fluorescence recovery after photo-bleaching (FRAP) measurements, the membrane morphology and the molecular mobility were studied. The lipid mobility increased in the sequence DPPC < DPPC/MO (RMO = 5/5) < DOPC/MO (RMO = 5/5) < DOPC, which is consistent with the flux increment and salt rejection. This study may provide some useful insights for improving the water purification performance of biomimetic membranes.  相似文献   

18.
The aim of this study was to investigate the degree of deacetylation (DD) and molecular weight (MW) of chitosan within chitosan–collagen scaffolds on mouse osteoblasts (MC3T3-E1). The chitosan–collagen scaffolds were fabricated by freeze-drying technique. The studies on cell attachment and proliferation, alkaline phosphatase (ALP) activity, cell morphology, and mineralized nodule formation by osteoblasts on scaffolds were investigated. No statistically significant difference was found on cell attachment, but the chitosan–collagen scaffolds with low-DD chitosan had a statistically significantly (P < 0.05) higher proliferative effect and ALP activity than those scaffolds with high-DD chitosan, regardless of molecular weight. Scanning electron images demonstrated that MC3T3-E1 cells grew well on all test scaffolds; on the contrary, mineralized nodule formation was not found. In conclusion, the DD of chitosan is a crucial factor for MC3T3-E1 cells and it should be considered in further applications for bone tissue engineering.  相似文献   

19.
X-ray diffraction diagrams of neutron irradiated Zircaloy-4 were obtained at the Brazilian Synchrotron Laboratory (LNLS) with the aim to obtain bulk information about the amorphization process in which the Zircaloy-4 second phase particles (SPPs) undergoes due to neutron irradiation. Owing to the low concentration of the SPPs in the alloy (∼ 0.4 V%), no data regarding to the bulk were obtained until now. The synchrotron experiences allowed to detect five of the more intense lines of the phase C14 (SPPs structure) in unirradited Zircaloy-4: <110>θ, <103>θ, <112>θ, <201>θ and <004>θ in the 34° < 2θ < 45° Bragg angle range and others of minor intensity. The diagrams of the samples irradiated at moderate doses (1020 n/cm2) show these lines even in the as received samples. In contrast, none of these lines are observed for high fluency samples (∼ 1022 neutrons/cm2), confirming in the bulk what is known by TEM in thin films. In addition, in similar high fluency samples annealed 24 h or 72 h at 600 °C the intensity rises just at the 2θ range where the C14 lines were observed, showing a wide peak. That peak is interpreted as a result of the superposition of unresolved diffraction lines corresponding to the Zircaloy SPPs which are in a reconstitution process of crystallization.  相似文献   

20.
Osteoblasts or stem cells have been delivered into injectable calcium phosphate cement (CPC) to improve its effectiveness and biological function. However, the osteogenic potential of the new construct in vivo has been rarely reported, and there are no reports on alginate–chitosan microencapsulated osteoblasts mixed with CPC. This study aimed to develop alginate–chitosan microencapsulated mouse osteoblast MC3T3-E1 cells (AC-cells), evaluate the osteogenic potential of a calcium phosphate cement complex with these AC-cells (CPC-AC-cell), and trace the implanted MC3T3-E1 cells in vivo. MC3T3-E1 cells were embedded in alginate microcapsules, cultured in osteogenic medium for 7 days, and then covered with chitosan before mixing with a paste of β-tricalcium phosphate/calcium phosphate cement (β-TCP/CPC). The construct was injected into the dorsal subcutaneous area of nude mice. Lamellar-bone-like mineralization, newly formed collagen and angiogenesis were observed at 4 weeks. At 8 weeks, areas of newly formed collagen expanded; further absorption of β-TCP/CPC and osteoid-like structures could be seen. Cell tracing in vivo showed that implanted MC3T3-E1 cells were clearly visible at 2 weeks. These in vivo results indicate that the novel injectable CPC-AC-cell construct is promising for bone tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号