首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ordered mesoporous carbons (OMC), were synthesized by nanocasting using ordered mesoporous silica as hard templates. Ordered mesoporous carbons CMK-1 and CMK-3 were prepared from MCM-48 and SBA-15 materials with pore diameters of 3.4 nm and 4.2 nm, respectively. Mesoporous carbons can be effectively modified for CO2 adsorption with amine functional groups due to their high affinity for CO2. Polyaniline (PANI)/mesoporous carbon nanocomposites were synthesized from in-situ polymerization by dissolving OMC in aniline monomer. The polymerization of aniline molecules inside the mesochannels of mesoporous carbons has been performed by ammonium persulfate. The nanocomposition, morphology, and structure of the nanocomposite were investigated by nitrogen adsorption-desorption isotherms, Fourier Transform Infrared (FT–IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and thermo gravimetric analysis (TGA). CO2 uptake capacity of the mesoporous carbon materials was obtained by a gravimetric adsorption apparatus for the pressure range from 1 to 5 bar and in the temperature range of 298 to 348 K. CMK-3/PANI exhibited higher CO2 capture capacity than CMK-1/PANI owing to its larger pore size that accommodates more amine groups inside the pore structure, and the mesoporosity also can facilitate dispersion of PANI molecules inside the pore channels. Moreover, the mechanism of CO2 adsorption involving amine groups is investigated. The results show that at elevated temperature, PANI/mesoporous carbon nanocomposites have a negligible CO2 adsorption capacity due to weak chemical interactions with the carbon nanocomposite surface.  相似文献   

2.
Hierarchical porous nitrogen-doped carbon (HPNC) materials are synthesized through one-step carbonization of polyimide using triblock copolymer P123 as mesoporous template. The microstructure, chemical composition and CO2 adsorption behaviors are investigated in detail. The results show that HPNC materials have hierarchical micro-/mesopore structures, high specific surface area of 579 m2/g, large pore volume of 0.34 cm3/g, and nitrogen functional groups (5.2 %). HPNC materials exhibit high CO2 uptake of 5.56 mmol/g at 25 °C and 1 bar, which is higher than those of previously reported nitrogen-doped porous carbon materials. After 5 cycles the value of CO2 adsorption uptakes is 5.28 mmol/g, which is approximately 95 % of the original adsorption capacity. The estimated CO2/N2 selectivity of HPNC materials is 17, revealing great promise for practical CO2 adsorption and separation applications. The efficient CO2 uptake and enhanced CO2/N2 selectivity are due to the combination of nitrogen-doped and hierarchical porous structures of HPNC materials.  相似文献   

3.
Novel low-temperature swing adsorbents that preferably adsorb CO2 were synthesized by varying loading of heteropolyacid Fe1.5PMo12O40 (Fe–PMA) supporting on mesoporous cellular foams (MCFs) by wetting impregnation. The synthesized materials were characterized by various physicochemical, thermal and spectral techniques and the CO2 adsorption capacity of the materials were evaluated. Solid adsorbents showed a significantly high adsorption capacity toward CO2 due to the chemisorptions of CO2. The CO2 adsorption capacities of the materials decreased as the temperature increased. The results showed that the adsorption capacity reached a level of 81.8 mg CO2/g-adsorbent at 25 °C for the 20 wt% Fe–PMA–MCFs. These results indicated that the iron (Fe2+) complexes acted as efficient catalysts for the separation of CO2. The as-synthesized adsorbents were selective, thermally stable, long-lived, and could be recycled at a temperature of 110 °C.  相似文献   

4.
A highly efficient and stable solid adsorbent invoking a direct incorporation of tetraethylenepentamine (TEPA) onto the as-synthesized mesocelullar silica foam (MSF) has been developed for CO2 capture. Unlike most amine-functionalized silicas, which typically exhibit CO2 adsorption capacities less than 2.0 mmol/g, such organic template occluded mesoporous silica-amine composites exhibited remarkably high CO2 uptake as high as 4.5 mmol/g at 348 K and 1 atm. Moreover, notable increases in CO2 adsorption capacities of the composite materials were observed when in the presence of humidity. Durability test performed by cyclic adsorption–desorption revealed that such adsorbents also possess excellent stability, even though a slight decrease in adsorption capacity over time was observed.  相似文献   

5.
Amine-modified SiO2 aerogel was prepared using 3-(aminopropyl)triethoxysilane (APTES) as the modification agent and rice husk ash as silicon source, its CO2 adsorption performance was investigated. The amine-modified SiO2 aerogel remains porous, the specific surface area is 654.24 m2/g, the pore volume is 2.72 cm3/g and the pore diameter is 12.38 nm. The amine-modified aerogel, whose N content is up to 3.02 mmol/g, can stay stable below the temperature of 300 °C. In the static adsorption experiment, amine-modified SiO2 aerogel (AMSA) showed the highest CO2 adsorption capacity of 52.40 cm3/g. A simulation was promoted to distinguish the adsorption between the physical process and chemical process. It is observed that the chemical adsorption mainly occurs at the beginning, while the physical adsorption affects the entire adsorption process. Meanwhile, AMSA also exhibits excellent CO2 adsorption–desorption performance. The CO2 adsorption capacity dropped less than 10 % after ten times of adsorption–desorption cycles. As a result, AMSA with rice husk ash as raw material is a promising CO2 sorbent with high adsorption capacity and stable recycle performance and will have a broad application prospect for exhaust emission in higher temperature.  相似文献   

6.
Recent improvements in the performance of photocatalysts made it possible to tackle pollution through environment friendly methods. This study investigates the modification of the photocatalytic activity of TiO2 by employing WO3 and conductive polymers, namely, polyaniline (Pani) and polypyrrole (Ppy). Basing on our previous improvement of TiO2 using a conductive polymer and activated carbon (AC), this study determines the activated carbon forms of TiO2. The prepared composites are characterized using X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared, thermogravimetric analysis, Brunauer–Emmet–Teller, and UV–Vis spectroscopy. The specific surface area of the mesoporous composites is as follows: WO3/TiO2·AC (Pani) > WO3/TiO2·AC (Ppy) > WO3/TiO2·Pani > WO3/TiO2·Ppy (127 > 98 > 68 > 44 m2 g?1), which exhibited a similar trend to the photocatalytic performances (100 > 95 > 91 > 72 % conversion rate). This result could be attributed to higher porosity, surge of charge separation, and photo-responding range extension induced by the synergistic effect of WO3, conducting polymers, and TiO2 in the samples.  相似文献   

7.
CO2 methanation over supported ruthenium catalysts is considered to be a promising process for carbon capture and utilization and power-to-gas technologies. In this work 4% Ru/Al2O3 catalyst was synthesized by impregnation of the support with an aqueous solution of Ru(OH)Cl3, followed by liquid phase reduction using NaBH4 and gas phase activation using the stoichiometric mixture of CO2 and H2 (1:4). Kinetics of CO2 methanation reaction over the Ru/Al2O3 catalyst was studied in a perfectly mixed reactor at temperatures from 200 to 300 °C. The results showed that dependence of the specific activity of the catalyst on temperature followed the Arrhenius law. CO2 conversion to methane was shown to depend on temperature, water vapor pressure and CO2:H2 ratio in the gas mixture. The Ru/Al2O3 catalyst was later tested together with the K2CO3/Al2O3 composite sorbent in the novel direct air capture/methanation process, which combined in one reactor consecutive steps of CO2 adsorption from the air at room temperature and CO2 desorption/methanation in H2 flow at 300 or 350 °C. It was demonstrated that the amount of desorbed CO2 was practically the same for both temperatures used, while the total conversion of carbon dioxide to methane was 94.2–94.6% at 300 °C and 96.1–96.5% at 350 °C.  相似文献   

8.
A supernatant solution of silicate species extracted from bottom ash in a power plant was used to prepare a mesoporous silica by the synthesis protocol of SBA-15. XRD, N2 adsorption-desorption, and TEM confirmed a disordered mesopore structure. The pore volume and average pore size of the product were significantly larger than SBA-15 prepared using pure chemicals, and complementary textural mesoporosity was detected. When the mesoporous silica was tested for carbon dioxide sorption after polyethyleneimine (PEI) impregnation, substantially higher CO2 sorption capacity (169 mg CO2/g-sorbent) was achieved than that of PEI-impregnated pure SBA-15 under the same test conditions. High CO2 sorption capacity was maintained when the gas composition was changed to 15% CO2, and the hybrid material exhibited satisfactory performances during the 10 recycle runs.  相似文献   

9.
A series of Fe-doped SH/TiO2 mesoporous photocatalysts have been firstly prepared by one-pot method using P123 as structure-directing agent. This bifunctionalized mesoporous TiO2 possesses perfect anatase crystal structure and high surface area. The surface area of Fe-doped SH/TiO2 mesoporous material is 4 times higher than that of P25. Based on the EPR results, it was found that trivalent Fe ions exist at low spin state and substitutes a part of Ti4+ ions into TiO2 lattice. Fe-dropping in TiO2 extends the adsorption band side of the resulting material to about 600 nm. Much high photocatalytic activity in the degradation of phenanthrene was obtained on the bifunctionalized mesoporous TiO2 under visible light irradiation (λ > 420 nm), which is 6 times higher than that of pristine mesoporous TiO2. The enhancement in the photocatalytic activity of bifunctionalized TiO2 is ascribed to the extended absorption to visible light and strong interaction between SH-groups and PHE molecules.  相似文献   

10.
Mesoporous siliceous MCM-41, MCM-48 and SBA-15 were synthesized using Rice Husk Ash (RHA) as the silica source. Their defective –OH sites were then grafted with 3-chloropropyl amine hydrochloride (3-CPA) and characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and BET techniques. Those results portrayed their resemblance with that synthesized from conventional silica sources. 3-CPA grafted mesoporous silicas were tested for CO2 chemisorption over fixed bed reactor at different temperatures. The maximum adsorption of 1.7 mmol/g of CO2 was observed on 3-CPA grafted SBA-15 (SBA-15/CPA) at 25°C. The chemisorbed CO2 on amine grafted mesoporous silica was stabilized by weak hydrogen bonds formed during the nucleophilic attack between lone pair of electrons in amine groups and quadrupolar CO2 with more degree of positive charge to form carbamates. The rapid steep slope which arises due to CO2 adsorption illustrated a minimal mass transfer effect and extreme fast kinetics. Performance tests such as reproducibility, stability and selectivity towards CO2 adsorption were also carried out over 3-CPA grafted mesoporous silica and the results were in line with that of well established CO2 sorbent.  相似文献   

11.
Graphitic mesoporous carbon (GMC), prepared through high-temperature graphitization of soft-templated amorphous mesoporous carbon (AMC), was used as the support for Mn, Li, and Fe triple-promoted Rh catalysts for CO hydrogenation to ethanol. The use of GMC results in C2H5OH selectivity and formation rate comparable to nonporous SiO2 support along with a significant inhibition on the formation of undesired CH4 and light hydrocarbons at the expense of appreciable amounts of CO2 produced. The better catalytic performance of promoted-Rh/GMC than those supported on other carbon allotropes (AMC and non-porous graphitic carbon black) seems to be associated with the specific graphitic structure and mesoporosity of GMC. The surface modification of GMC by wet oxidation leads to considerable increases in C2H5OH selectivity and formation rate. The modified GMC as a support shows substantially greater CO2-free selectivity for C2H5OH than the SiO2.  相似文献   

12.
The electrochemical performances of an electrical double layer capacitor were investigated regarding the activated carbon prepared from bamboo by a new approach, that is, the combination of delignification, addition of guanidine phosphate, and CO2 activation. In this study, a 1 M H2SO4 aqueous solution was used as the electrolyte of the capacitor. The physical properties, such as the BET specific surface area of the carbon material, depend on the preparation conditions of the activated carbon. A TEM image indicated that the addition of guanidine phosphate did not facilitate the graphitization and did not prevent activation by CO2. The apparent reaction equation for the CO2 activation was first-order, which is reasonable for physical activation. The electrochemical performances of the carbon material depended on the preparation conditions of the carbon material, such as the heat treatment temperature, amount of added guanidine phosphate, and CO2 activation time. The sample prepared under the following conditions (the amount of added guanidine phosphate: 9 wt%, the heat treatment temperature: 800 °C, CO2 activation time: 3 h) had the highest performance (153 F g?1 at 1000 mA g?1) because the sample had the highest BET specific surface area (2001 m2 g?1).  相似文献   

13.
Improvement in the functionality of carbon nanohorns (CNHs), a novel carbon nanomaterial, for hydrotreating applications is investigated in the present work. The current work was carried out by using pristine CNHs synthesized by the submerged arc in liquid nitrogen and their corresponding physicochemical properties were investigated. The surface area, pore diameter and pore volume of the pristine CNHs are 129 m2/g, 23.1 nm, and 0.64 cm3/g respectively. Functionalizing the CNHs with 30 wt% HNO3 under reflux for 15 min to 4 h at 110 °C modified the physical and chemical properties. 30 min functionalization duration was found to be the best and a co-impregnation method was used to load Ni (2.5 wt%) and Mo (13 wt%) onto the support. Techniques used to thoroughly characterize the properties of pristine CNHs, functionalized CNHs and NiMo/CNHs catalyst include: Brauner-Emmett-Teller (BET), Fourier Transform Infrared (FTIR) and Raman Spectroscopy. Type II isotherm and mesoporous pore diameter was observed for CNHs in it’s pristine, functionalized or catalyst form. An increase in surface area of over 500 m2/g was also attained under optimum functionalized conditions. The pore volume of acid treated CNH samples for hydrotreating increased by ~10 % as compared to the pore volume of the pristine CNHs. FTIR results revealed the presence of carboxylic acid (–COOH) groups on the functionalized CNHs and I D/I G ratios from Raman spectroscopy was used to assess the increase in defects (nanowindow) on functionalized CNHs. The enhanced properties of functionalized and catalyst-supported CNHs offers prospect for hydrotreating gas oils.  相似文献   

14.
Copolymerization of propylene oxide and carbon dioxide (CO2) has been studied using different R-salophenCoOBzF5 (OBzF5 = pentaflorobenzoate, R = CH3, H, Cl, Cl2) based catalysts. The central moiety of the catalysts R-salophenCoOBzF5 has been kept the same and effect of the catalyst electron density on the copolymerization reaction has been studied. It has been observed that introduction of an electron withdrawing group (like Cl, Cl2) on the o-phenylenediamine backbone moiety of the catalyst makes it more selective for poly(propylene carbonate) synthesis. On the other hand, introduction of an electron donating group (like CH3) makes the catalyst selective for cyclic carbonate conversion. The effect of different type of co-catalysts has also been investigated using tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, [PPN]+Cl? ([PPN]+ = bis(triphenylphosphine)iminium), DMAP and tetrabutyl ammonium bromide.  相似文献   

15.
Mesoporous TiO2 microspheres were successfully synthesized by a facile hydrothermal process and the obtained product was sintered at 450 °C. The sintered TiO2 powder was characterised by powder X-ray diffraction pattern and the result shows pure anatase phase with good crystalline nature. The morphological image of field emission scanning electron microscopy and high resolution transmission electron microscopy shows spherical shape and size of the particles is around 100 to 300 nm. The Brunauer–Emmett–Teller surface area of synthesized TiO2 material was 56.32 m2 g?1 and average pore width of synthesized materials was 7.1 and 9.3 nm. Bimodal pore structure of TiO2 microspheres has been very effective for electrolyte diffusion into photoanode in dye sensitized solar cells. The synthesized anatase TiO2 microsphere based dye sensitized solar cells have high surface area with light scattering effect to enhance the photocurrent and conversion efficiency than the commercial P25 photoanode material. The power conversion efficiency of synthesized mesoporous TiO2 microspheres and commercial P25 material is 4.2 and 2.7 % respectively. Therefore bimodal mesoporous anatase TiO2 microsphere appears to be a promising and potential candidate for dye sensitized solar cells (DSSC) application.  相似文献   

16.
MIL-101@g-C3N4 nanocomposite was prepared by solvothermal synthesis and used for CO2 adsorption. The parent materials (MIL-101 and g-C3N4) and the MIL-101@g-C3N4 were characterized by X-ray diffraction, argon adsorption/desorption, Fourier transform infrared spectroscopy, thermal analysis (TG/DTA), transmission electronic microscopy, and Energy-dispersive X-ray spectroscopy. The results confirmed the formation of well-defined MIL-101@g-C3N4 with interesting surface area and pore volume. Furthermore, both MIL-101 and MIL-101@g-C3N4 were accomplished in carbon dioxide capture at different temperatures (280, 288, 273 and 298 K) at lower pressure. The adsorption isotherms show that the nanocomposite has a good CO2 adsorption affinity compared to MIL-101. The best adsorption capacity is about 1.6 mmol g?1 obtained for the nanocomposite material which is two times higher than that of MIL-101, indicating strong interactions between CO2 and MIL-101@g-C3N4. This difference in efficacy is mainly due to the presence of the amine groups dispersed in the nanocomposite. Finally, we have developed a simple route for the preparation of an effective and new adsorbent for the removal of CO2, which can be used as an excellent candidate for gas storage, catalysis, and adsorption.  相似文献   

17.
In the present work, mesoporous carbon monoliths with worm-hole structure had been synthesized through hydrothermal reaction by using amphiphilic triblock copolymer F127 and P123 as templates and resole as carbon precursor. Synthesis conditions, carbonization temperature and pore structure were studied by Fourier transform infrared, thermogravimetric analysis, transmission electron microscopy and N2 adsorption–desorption. The results indicated that the ideal pyrolysis temperature of the template is 450 °C. The organic ingredients were almost removed after further carbonized at 600 °C and the mesoporous carbon monoliths with worm-hole structure were obtained. The mesoporous carbon synthesized with P123 as single template exhibited larger pore size (6.6 nm), higher specific surface area (747 m2 g?1), lower pore ratio (45.9 %) in comparison with the mesoporous carbon synthesized with F127 as single template (with the corresponding value of 4.9 nm, 681 m2 g?1, 49.6 %, respectively), and also exhibited wider pore size distribution and lower structure regularity. Moreover, the higher mass ratio of template P123/resole induced similar pore size, larger specific surface area and lower pore ratio at the same synthesizing condition. It was also found that the textural structure of mesoporous carbon was affect by calcination atmosphere.  相似文献   

18.
In this work, we are reporting for the first time the synthesis of hierarchical micro‐ and mesoporous zeolite using silica–carbon (SiO2/C) composites prepared by pyrolysis of carbonaceous gases in the presence of silica gel. The pyrolysis effectively yielded carbon deposited onto the raw silica material. The obtained SiO2/C composites were utilised as a bifunctional material, mesoporous template and silica source, for the zeolite synthesis. Tetrapropylammonium hydroxide (TPAOH) was used as a microporous template. The combination of the obtained composites and the TPAOH for the hydrothermal synthesis resulted in the formation of hierarchical micro‐ and mesoporous ZSM‐5. The results from the SEM, TEM, and N2 adsorption/desorption isotherms, and 27Al MAS NMR characterisations of the synthesised samples obtained after the removal of the templates confirmed the successful formation of the micro‐ and mesoporous zeolites. The mesoporosity of the zeolites could be controlled by adjusting the carbon content in the SiO2/C composites while the carbon content could be controlled by varying the deposition time and the concentration of the carbonaceous gases used. This controllable and efficient synthesis method is considered to be a promising method for creating hierarchical micro‐ and mesoporous zeolites. © 2011 Canadian Society for Chemical Engineering  相似文献   

19.
Kaisheng Xia  Jinhua Jiang  Juan Hu 《Carbon》2008,46(13):1718-1726
Various porous carbons were prepared by CO2 activation of ordered mesoporous carbons and used as electrode materials for supercapacitor. The structures were characterized by using X-ray diffraction, transmission electron microscopy and nitrogen sorption at 77 K. The effects of CO2 treatment on their pore structures were discussed. Compared to the pristine mesoporous carbons, the samples subjected to CO2 treatment exhibited remarkable improvement in textural properties. The electrochemical measurement in 6 M KOH electrolyte showed that CO2 activation leads to better capacitive performances. The carbon CS15A6, which was obtained after CO2 treatment for 6 h at 950 °C using CMK-3 as the precursor, showed the best electrochemical behavior with a specific gravimetric capacitance of 223 F/g and volumetric capacitance of 54 F/cm3 at a scan rate of 2 mV/s and 73% retained ratio at 50 mV/s. The good capacitive behavior of CS15A6 may be attributed to the hierarchical pore structure (abundant micropores and interconnected mesopores with the size of 3-4 nm), high surface area (2749 m2/g), large pore volume (2.09 cm3/g), as well as well-balanced microporosity and mesoporosity.  相似文献   

20.
A sulfonic acid functionalized titanium dioxide quasi-superparamagnetic nanocatalyst Fe3O4@SiO2@TiO2-OSO3H with average size of 61 nm and semispherical shape with surface area about 97 m2 g?1 with saturation magnetization 17.7 emu g?1 and the coercivity 9.84 Oe was successfully synthesized. The structure and morphology of the nanocatalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy, X-ray diffraction pattern, transmission electron microscopy, field-emission scanning electron microscopy, vibrating sample magnetometer and Brunauer–Emmett–Teller surface area analysis. The catalytic usage of the nanocatalyst was exemplified in synthesis of 2,3-dihydroquinazolin-4(1H)-one and spiroquinazolin-4(3H)-one derivatives in deep eutectic solvents (DESs) based on choline chloride and urea. We suggest that the synergistic effects in catalytic activities of titanium dioxide, organic acid and the CO2 capture property of DES are the main reasons for the improvement of catalytic activity. The synthesized spiroquinazolinones and dihydroquinazolinones derivatives were characterized by FT-IR, 1H and 13C nuclear magnetic resonance spectroscopy. The magnetic nanocatalyst exhibit high catalytic activity and can be simply separated from reaction media by an external magnet in a few seconds and could be reused for six cycles without significant loos in activity, which indicates the good immobilization of sulfonic acid on the magnetic titanium dioxide support. Furthermore, the solvent which has been used in this work can be readily isolated and reused for several times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号