首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
二氧化硅气凝胶的气相热导率模型分析   总被引:1,自引:1,他引:1  
气凝胶是一种超级隔热材料,具有极低的整体热导率。气凝胶的纳米多孔网络结构极大限制了气体分子热运动,使得气凝胶中的气相热导率低于自由气体的气相热导率。本文介绍并讨论了气凝胶气相热导率的基本理论和模型,考察了孔径尺度和气凝胶固相骨架对气相热导率的影响。结果表明,气凝胶气相热导率随气压和孔径的减小而迅速降低,随气凝胶密度的增大而降低。当压力极低时,气凝胶的气相热导率远低于常压下大空间的静止空气。气凝胶纳米固体网格对气相热导率存在重要影响,在(0.01~100)×105 Pa的压力范围内影响尤其显著。  相似文献   

2.
《Ceramics International》2022,48(5):6691-6697
The speed of sound is a critical parameter in the test of mechanical and thermal properties. In this work, we proposed a testing method to obtain the elastic modulus of silica aerogel from the sound speed formulas. The solid thermal conductivity of the silica aerogel is experimentally measured for predicting the sound speeds, and then the elastic modulus is calculated based on the elasticity sound speed model. The experimental data of the solid thermal conductivity of silica aerogels with different densities are employed and the obtained elastic modulus is fitted as a power-law exponential function of the density. Two existing sound speed models and three groups of available experimental data are also employed to validate the present fitting relation, and good agreement is obtained for the silica aerogel in the density range of 150–350 kg/m3. The fitting formula can also be extended to estimate the elastic modulus of the glass fiber-reinforced silica aerogel composite. The results show that the elastic modulus of the aerogel composite is sensitive to the glass fiber volume fraction, while the thermal conductivity is weakly dependent on the glass fiber volume fraction at room temperature in the studied range of fiber volume fraction.  相似文献   

3.
The previous report of this work has demonstrated the fabrication and properties of porous yttria-stabilized zirconia (YSZ) ceramics with unidirectionally aligned pore channels. As a follow-up study, the present work aims at lowering the thermal conductivity of the porous YSZ ceramics by silica aerogels impregnation. The porous YSZ ceramics were immersed in an about-to-gel silica sol. Both the unidirectionally aligned pore channels and the inter-grain pores by grain stacking in the channel-pore wall of the porous YSZ ceramics were impregnated with the silica sol. After aging and supercritical drying, silica aerogels formed in the macroporous network of the porous YSZ ceramics with unidirectionally aligned pore channels. The influences of silica aerogel impregnation on the microstructure and properties of porous YSZ ceramics with unidirectional aligned pore channels were investigated. The porosity decreased after impregnation with silica aerogels. Both microstructure observation and pore size distribution indicated that both channel-pore size and inter-grain pore-size decreased significantly after impregnation with silica aerogels. Impregnating porous YSZ ceramics with silica aerogels remarkably lowered the room-temperature thermal conductivity and enhanced the compressive strength. The as-fabricated materials are thus suitable for applications in bulk thermal isolators.  相似文献   

4.
《Ceramics International》2022,48(2):2250-2256
Silica aerogels are low-density, low-thermal conductivity, and highly porous solids used in a wide range of applications. In the present work, the glass fibers-reinforced silica aerogels nanocomposite models were investigated for thermal conductivity using molecular dynamics (MD) simulations. Here, the glass fibers weight percentage (% wt) was varied from 2.14 to 21.20%, i. e., the density of the silica aerogel nanocomposite ranged from 252 to 307 kg m?3. The thermal conductivity increases with the % wt of glass fibers for the considered range. However, the increase was insignificant, i. e., from 0.0357 to 0.048 W m?1 K?1. Moreover, the thermal conductivity varies with the density of nanocomposite according to a power-law with an exponent of 1.90 ± 0.18. Furthermore, the obtained thermal conductivity values of silica aerogels and their nanocomposites are in good agreement with experimental and computational studies. The outcome shows that the glass fibers-reinforced silica aerogels nanocomposites can be used for low-thermal conductivity applications.  相似文献   

5.
Alumina–silica composite aerogels have drawn vast attention due to their enhanced thermal stability compared to pristine alumina aerogels. However, they are generally weakly-crystallized and tend to experience inevitable sintering and significant surface area loss especially above 1200 °C. In this study, we developed a hydrothermal treatment and supercritical drying strategy for synthesizing novel, well-crystallized, silica-modified boehmite aerogels and fiber-reinforced composites. For the prepared aerogel, network coarsening was significantly hindered and the α-Al2O3 transition was completely prevented even at 1400 °C. As a result, the aerogel exhibits extremely high surface area maintenance (87 % and 53 % after 1300 °C and 1400 °C calcination, respectively) and low linear shrinkage (14 % after 1300 °C calcination) at elevated temperatures. The composite with good toughness shows excellent heat resistance and thermal insulating performance up to 1500 °C. These findings provide a general, direct new idea to improve the thermal tolerance of alumina-based aerogels and extend their applications to higher temperatures.  相似文献   

6.
This report describes a novel method to produce fluffy and resilient nanotube aerogels by combining solution blow spinning and Atom Layer Deposition (ALD). Polyvinylpyrrolidone (PVP) sponges obtained by blow spinning are used as templates and are deposited in ALD. After removal of template, semitransparent aerogels whose density can be as low as 0.68 mg/cm3 were obtained. The product is heat‐stable, with the ability to retain original shape and keep elastic after being kept at 900°C for 2 hours. It is also heat‐insulated, with a thermal conductivity of 0.022 W/K?m at room temperature. Additionally, when compressed to 60% of the original height for 100 cycles during in‐situ mechanical test, the sponges recovered to around 80% of the original shape, further indicating excellent mechanically elasticity of the aerogel.  相似文献   

7.
《Ceramics International》2019,45(9):11368-11374
The monolithic silicon carbide (SiC) aerogels were converted from catechol-formaldehyde/silicon composite (CF/SiO2) aerogels through carbothermal reduction and calcination. In the process of preparing the CF/SiO2 aerogel, a new method was proposed to produce more silicon carbide and enhanced the mechanical properties of the SiC aerogel. This method was realized by adding an alkaline silica sol as supplemental silicon source. The principle process of CF/SiO2 aerogels converting to SiC aerogels was discussed based on experiment and results analysis, while the microstructure, mechanical properties, and thermal properties of the prepared SiC aerogels were investigated. The results show that the as-synthesized SiC aerogels consist of β-SiC and a small amount of α-SiC nanocrystalline. It possessed a mesoporous structure and a low thermal conductivity 0.049 W/(m∙K), a relatively high compressive strength 1.32 MPa, and a relatively high specific surface area 162 m2/g. Due to their outstanding thermal and mechanical properties, the prepared SiC aerogels present potential applications in thermal insulation field, such as space shuttles and aerospace carrier thermal protection materials.  相似文献   

8.
《Ceramics International》2019,45(13):16331-16337
C/silica (RF/SiO2) aerogel (RFSA) was synthesized via a one-step sol-gel process and supercritical fluid drying. Then, monolithic silicon nitride (Si3N4) aerogel (SNA) was prepared via carbothermal nitridation of the RFSA in flowing N2. The effects of the RFSA density and carbothermal temperature on the formation of the SNA were investigated. The evolution of the physical properties, chemical structure, morphology, pore structure, and thermal performance of the SNA was examined. Si3N4 nanocrystals were formed from the RFSA at a carbothermal temperature of 1500 °C. The as-prepared SNA had a low density (0.127 g/cm3), large specific surface area (445 m2/g) and low thermal conductivity (0.04909 W/(m·K)), which were far better than those of its state-of-art counterparts. Because of its good thermal stability, the SNA can be used as a thermal insulator and support at high temperatures.  相似文献   

9.
《Ceramics International》2020,46(7):8669-8674
In this study, we have tested the acids different than the ones used in the standard production of silica aerogel in the literature. We also obtained very light solid powder samples by drying them under normal room conditions. We made their characterization and investigated the effects of silica aerogels produced by these different acids on the thermal insulation. In the study, different acids were added to the same molar amounts, provided that all the other reaction steps remained the same. According to the results, the best thermal insulation was achieved with hydroiodic acid. At the same time, a correlation was identified between pKa values of the acids and thermal conductivity coefficients. This relationship was both formulated and the theory behind it was explained.  相似文献   

10.
This study demonstrated the synthesis of novel zirconium pyrophosphate (ZrP2O7) ceramic foams via a two-step method using a foam casting technique. The synthesised foams functioned as thermal insulators with a highly controllable performance. We investigated the effects of the addition of foaming and thickening agents as well as the solid content of the slurries on the slurry, mechanical properties, thermal conductivities, and microstructure of ZrP2O7 ceramic foams. The ZrP2O7 ceramic foams synthesised at 1473 K exhibited a porosity, compressive strength, and thermal conductivity of 75.2–89.1 %, 1.95–0.02 MPa, and 0.144–0.057 W/(m K) (298–573 K), respectively. The increase in the porosity to >60 % will facilitate applications based on the low thermal conductivities of the foams.  相似文献   

11.
C/SiC aerogels with both ultra-low thermal conductivity and extremely high strength were fabricated by freeze casting. SiC junctions originated from pyrolysis of polycarbosilane (PCS) were formed between carbon nanofibers (Cf) to enhance the strength of aerogels. The effects of PCS content and total solid content on the phase composition, pore structure, thermal conductivity and compressive property were studied. The fabricated aerogels possess hierarchical pore structure. In the micro-scale, it contains circular pores with size of about 15 µm, while it is mesoporous and macroporous in the nano-scale. Both thermal conductivity and compressive strength increase with the increase in PCS content. Through tailoring PCS content and total solid content, Cf/SiC aerogels with porosity of 99.5%, thermal conductivity of 33 mW·m−1·K−1 and compressive strength of 7.14 MPa can be obtained. The specific strength of the fabricated Cf/SiC aerogels is up to 467.6 MPa/(g/cm3), which is the highest value for ceramic aerogels.  相似文献   

12.
《Ceramics International》2022,48(7):9788-9796
In recent years, the need for robust thermal protection for reusable spacecraft and vehicles has spurred strong demand for high-performance lightweight thermal insulation materials that exhibit high strength. Herein, we report silica porous ceramics prepared via the direct foaming technique with lightweight, ultra-low thermal conductivity and enhanced compressive strength. Silica particles (particle size: 500 nm and 2 μm) were used as the raw materials. The nano-sized silica particles were easily sintered, thereby improving the compressive strength of the ceramics, whereas the micro-sized silica particles maintained the pore structure integrity without deformation. The addition of nano-silica enhanced the compressive strength by 764% (from 0.039 to 0.337 MPa). In addition, the thermal conductivity of the ceramics was as low as 0.039 W m?1 K?1. Owing to these outstanding characteristics, these porous silica ceramics are expected to be employed as thermal insulation material in diverse fields, especially aerospace and space where weight is an important constraint.  相似文献   

13.
Ultralow thermal conductivity and ultralight mullite fibers/mullite whiskers composite aerogels (MF/MW) with secondary-pore structure have been prepared via vacuum impregnation and high-temperature treatment. The in-situ generation of mullite whiskers during vapour-solid reaction process and the mechanism of improving thermal stability have been discussed in detail. Under catalysis condition at 1200 °C, the zero-dimensional nanoparticles of SiO2-Al2O3 aerogels are guided to in-situ transform into one-dimensional mullite whiskers. The secondary-pore structure formed by the overlapped fibers and whiskers in MF/MW reduces the thermal conductivity [as low as 0.0488 W/m?1 K?1 compared with that of MF preform (0.0698 W/m?1 K?1)] and exhibits excellent thermal stability after 1400 °C heat treatment (0.0503 W/m?1 K?1) due to the macropores are decreased and gaseous heat transfer being further weakened effectively. Moreover, the MF/MW exhibits good mechanical performance with high critical compressive stress of 0.2809 MPa, which is more than 317% higher than that of MF preform (0.0673 MPa) at room temperature.  相似文献   

14.
Silica aerogels are applied extensively in thermal insulation due to their extra-low density and thermal conductivity. However, this can be heavily undermined under high temperature, especially beyond 700–800 °C, due to not only a high transparency for radiation heat transfer, but also an instability caused by nanoparticle collapse. The present study demonstrated a solution to this problem by two steps. Firstly, the size effect of nanoparticles is explored by experimentally preparing unconventional samples composed of large-diameter particles (larger than 20 nm). The prepared sample microstructures and radiative characteristics are investigated by SEM apparatus and FTIR measurements, respectively. Additionally, based on the fractal structures reconstructed using the Diffusion-Limited Colloid Aggregation (DLCA) method, the effects of particle size on thermal stability of silica aerogels are theoretically investigated and the light shielding performance is numerically analyzed by the Generalized Multiparticle Mie-solution (GMM) method. The simulation and experimental results indicate that the enhanced size of nanoparticles can improve the radiative inhibition and thermal stability property under high temperature significantly. However, the ideal above should be refined as it brings an increasing contribution of conduction heat transfer. Thus, a novel structure of core-mantle nanoparticle is proposed to retain the excellent resistance in radiation but avoid an increased thermal conduction. The present work may pave a new direction for developing aerogels under extreme temperature conditions, compared with the widely-used opacifier addition.  相似文献   

15.
二氧化硅气凝胶的制备和表征   总被引:1,自引:1,他引:1  
以正硅酸四乙酯为硅源,通过采取老化、表面修饰、溶剂置换和分级干燥等一系列抑制二氧化硅气凝胶干燥中出现缩裂的有效措施,以非超临界干燥技术最终获得了大块无裂纹的二氧化硅气凝胶。该气凝胶的孔径较小且分布均匀,比表面积为684m^2/g,孔体积可达1.38cm^3/g,最可几孔径为3.221nm,平均孔径达2.871m。同时在实验和理论分析的基础上总结二氧化硅气凝胶缩裂的主要原因和抑制缩裂的有效措施。  相似文献   

16.
Materials with high-performance thermal insulation and excellent flame-resistance are incredibly desirable for energy conservation and fire safety. In this study, a novel hybrid nanostructure network polybenzoxazine/silica (PBO/SiO2) aerogels were fabricated through facile in situ co-polymerization sol-gel methods with ambient pressure drying using benzoxazine (BO) monomers and SiO2 sol as reaction source, N, N-dimethylformamide (DMF) as the solvent and hydrochloric acid (HCl) as the catalyst. The hybrid nanostructure network was retained by polymerization–induced nanoscale phase separation of PBO and SiO2. The resulting PBO/SiO2 aerogels exhibited finer microstructure, lower density (0.18 g/cm3), thermal conductivity (0.031 W/m·K), and better flame-resistance in comparison with PBO aerogels. They demonstrated an excellent compressive strength of 0.81 to 1.12 MPa at 10% deformation. The remarkable improvement in thermal insulation and flame-resistance of PBO/SiO2 aerogels could be attributed to the combined effects of finer microstructure and formation of SiO2 that was “in-situ” interpenetrated and interacted with silanols (Si-OH) in the PBO network during the combustion process. The successful synthesis of PBO/SiO2 aerogels highlights the possibility of fabricating a novel high-performance thermal insulation and excellent flame-resistance used for energy-efficient buildings.  相似文献   

17.
Porous La2Zr2O7 ceramic aerogels (CAs) were prepared by sol-gel template method and thermal treated process. The microstructure and crystallisation behavior of the samples were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The results indicated that the as-prepared porous La2Zr2O7 CAs had a single-phase pyrochlore structure with typical three-dimensional (3-D) porous structure. Meanwhile, the formation mechanisms of the as-prepared porous La2Zr2O7 CAs were investigated. At the same time, the as-prepared porous La2Zr2O7 CAs presented an ultralow room-temperature thermal conductivity of 0.07 W/(m K), high specific surface areas of 325.17 m2/g, and a relatively high compressive strength of 11.95 MPa. What's more, the as-prepared porous La2Zr2O7 CAs possessed ideal photocatalytic activities due to its high crystallinity, large surface area as well as unique 3-D porous structure. Therefore, the present work is proposing some new insight to prepare rare-earth zirconates CAs with porous structures for thermal insulation and dye degradation applications.  相似文献   

18.
《Ceramics International》2017,43(14):10799-10804
Silica aerogel is deemed as a kind of high-performance thermal insulation materials. However, the existence of macropores in the structure is always ignored in the research and application of aerogels. Thus the thermal insulation performance of silica aerogels could be further improved if the macropores are reduced. In this work, nano-sized Al2O3 powders are explored as nano fillers to reduce the macropore volume fraction in silica aerogels by filling the big voids among the silica aggregates, and further lower the thermal conductivity. The experimental results showed that the macropore volume fraction (VMAC) was dramatically reduced from 63.05% to 23.12% with the addition of Al2O3 powders ranging from 0.0 g to 1.0 g. This trend was also verified by the variation of (VT*-VBET) and (VBET/VT*). Accordingly, the thermal insulation performance was improved due to the reduction of macropores in aerogels. The lowest thermal conductivity of Al2O3-doped aerogels reached 7.41 mW/(m K) in contrast with that of pure silica aerogels (9.00 mW/(m K)), which was a significant decline for aerogel-based materials due to the gaseous heat transfer being further weakened. Moreover, the increment of thermal conductivity from 7.41 to 9.71 mW/(m K) with the Al2O3 powders increasing could be attributed to the enhancement of solid heat transfer in the system. The variation of experimental thermal conductivity was in good agreement with the result of theoretical calculation. This study proposed an innovative idea to improve the thermal insulation of aerogel under ambient conditions.  相似文献   

19.
Thermal energy storage (TES) with phase change materials (PCMs) presents some advantages when shape-stabilization is performed with ceramic aerogels. These low-density and ultra-porous materials guarantee high energy density and can be easily regenerated through simple pyrolysis while accounting for moderate mechanical properties. However, the small pore size that typically characterizes these sorbents can hinder the crystallization of PCMs, slightly reducing the energy density of the stabilized compound. In this work, we present the use of polymer-derived mesoporous SiC and SiOC aerogels for the stabilization of polyethylene glycol and a fatty alcohol (PureTemp 23), having a melting temperature of 17 and 23°C, respectively. Their TES performances point out maximum thermal efficiency values of around 80%. These performances are discussed accounting for the results of thermogravimetric analysis, differential scanning calorimetry, and leaking tests.  相似文献   

20.
For the sake of enhancing the performance of flexible silica aerogel in practical applications, flexible SiO2/SnO2 nanofibers (SSNF) reinforced flexible silica aerogel composites (abbreviated as SiO2-SSNF) were successfully prepared. Firstly, the SiO2/SnO2 nanofibers with fine diameter (~320 nm) and excellent flexibility were prepared by electrospinning technology. Then the aerogel composites were synthesized by adding the flexible SSNF to the silica solution and through the sol-gel method and ethanol supercritical drying technology. The effects of different content of the nanofibers on thermal conductivity and Yong's modulus of SiO2-SSNF aerogel composites were investigated. The SiO2/SnO2 nanofibers were randomly dispersed in the flexible silica aerogel and the great integrity of the material result in smaller linear shrinkage, better thermal protection, and mechanical properties compared with those pure SiO2 aerogels. The final SiO2-SSNF aerogel composites possess excellent thermal conductivity (0.025-0.029 W/(m∙K)) and higher Yong's modulus (70 kPa), which was twice than that of the pure silica aerogel. This prepared SiO2-SSNF aerogel composites can be better used in thermal insulation due to its excellent flexible and thermal insulation property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号