首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The stability of anionic-cationic surfactant solutions and the antimicrobial properties of novel N,N-dimethyl-N-[3-(gluconamide/lactobionamide)]propyl-N-alkylammonium bromides (CnDGPB and CnDLPB), N-methyl-N-hydroxyethyl group-N-[3-(gluconamide)-propyl]-N-alkylammonium bromide (CnMHGPB) and star-shaped gluconamide-type cationic surfactants N-dodecyl-N,N-bis[(3-d-gluconylamido)propyl]-N-alkylammonium bromide (CnDBGB) were investigated. Mixed stability in combination with sodium n-alkylbenzenesulfonate (LAS) was determined via transmittance; stability is achieved when percent transmittance was greater than 90 %. Transmittance results suggest that these cationic surfactants can form stable solutions with anionic surfactants over a broad concentration range. The inhibition activity of C n DBGB is the best among the three kinds of glucocationic surfactants. Antimicrobial activity of C12 surfactants was the best, C14 was the second and C10 was the worst. Moreover, antibacterial activity of glucose-based cationic surfactants was greater than lactose-based cationic surfactants.  相似文献   

2.
Two novel hybrid catalysts based on incorporation of CuI in amine-functionalized halloysite using two different amine functionalization agents, i.e. 3-aminopropyl-triethoxysilane, APTES, and N-[3-(trimethoxysilyl)propyl] ethylenediamine, AEAPTMS, have been synthesized and characterized by using SEM/EDX, XRD, FTIR, ICP, BET, and TGA. Furthermore, the ability of the ligands toward CuI adsorption in the gas and solution phases were compared quantitatively using DFT simulation. The results showed that AEAPTMS-functionalized halloysite has more affinity toward CuI adsorption, which decreases catalyst leaching. This catalyst was successfully used for promoting A3 coupling reaction of aldehydes, phenyl acetylene and amines under ultrasonic irradiation to furnish the corresponding propargylamines in short reaction time and high yields. The synthesized catalyst exhibited high reusability and could be recovered and reused, preserving its catalytic activity.  相似文献   

3.
Bio-/environment-friendly cationic gemini surfactant, ethane-1,2-diyl bis(N,N-dimethyl-N-hexadecylammoniumacetoxy)dichloride, referred to as 16-E2-16, was synthesized and characterized. Corrosion inhibition effects of 16-E2-16 on mild steel (MS) surface in 1 M HCl solution at 30, 40, 50 and 60 °C were evaluated using gravimetric analysis, potentiodynamic polarisation and electrochemical impedance spectroscopy measurements. The nature of the protective inhibitor film formed on the MS surface was analysed by SEM, EDAX and FT-IR, while TGA was used to assure the thermal behaviour and stability of the film at high temperature. The formation of [inhibitor-Fe2+] on the surface of MS was confirmed by UV–visible spectroscopy. The inhibition efficiency of the studied inhibitor increased with increasing concentration and solution temperature. The compound behaved as a mixed type inhibitor and acted by blocking the electrode surface by means of adsorption obeying the Langmuir adsorption isotherm. Surface active properties and corrosion inhibition effects of 16-E2-16 in the presence of inorganic (NaI) and organic (NaSal) salts were also investigated and are discussed. Density functional theory calculations have been carried out to correlate the efficiency of the compound with its intrinsic molecular parameters.  相似文献   

4.
Two groups of disymmetric Gemini imidazolium surfactants, [C14C4C m im]Br2 (m = 10, 12, 14) and [C m C4C n im]Br2 (m + n = 24, m = 12, 14, 16, 18) surfactants, were synthesized and their structures were confirmed by 1H NMR and ESI–MS spectroscopy. Their adsorption at the air/water interface, thermodynamic parameters and aggregation behavior were explored by means of surface tension, electrical conductivity and steady-state fluorescence. A series of surface activity parameters, including cmc, γ cmc, π cmc, pC 20, cmc/C 20, Γ max and A min, were obtained from surface tension measurements. The results revealed that the overall hydrophobic chain length (N c) for [C14C4C m im]Br2 and the disymmetry (m/n) for [C m C4C n im]Br2 had a significant effect on the surface activity. The cmc values decreased with an increase of N c or m/n. The thermodynamic parameters of micellization (ΔG m θ , ΔH m θ , ΔS m θ ) derived from the electrical conductivity indicated that the micellization process of [C14C4C m im]Br2 and [C m C4C n im]Br2 was entropy-driven at different temperatures, but the contribution of ΔH m θ to ΔG m θ was enhanced by increasing N c or m/n. The micropolarity and micellar aggregation number (N agg) were estimated by steady-state fluorescence measurements. The results showed that the surfactant with higher N c or m/n can form larger micelles, due to a tighter micellar structure.  相似文献   

5.
Isoflavonoids are a characteristic family of natural products in legumes known to mediate a range of plant-biotic interactions. For example, in soybean (Glycine max: Fabaceae) multiple isoflavones are induced and accumulate in leaves following attack by Spodoptera litura (Lepidoptera: Noctuidae) larvae. To quantitatively examine patterns of activated de novo biosynthesis, soybean (Var. Enrei) leaves were treated with a combination of plant defense elicitors present in S. litura gut content extracts and L-α-[13C9, 15N]phenylalanine as a traceable isoflavonoid precursor. Combined treatments promoted significant increases in 13C-labeled isoflavone aglycones (daidzein, formononetin, and genistein), 13C-labeled isoflavone 7-O-glucosides (daidzin, ononin, and genistin), and 13C-labeled isoflavone 7-O-(6″-O-malonyl-β-glucosides) (malonyldaidzin, malonylononin, and malonylgenistin). In contrast levels of 13C-labeled flavones and flavonol (4′,7-dihydroxyflavone, kaempferol, and apigenin) were not significantly altered. Curiously, application of fatty acid-amino acid conjugate (FAC) elicitors present in S. litura gut contents, namely N-linolenoyl-L-glutamine and N-linoleoyl-L-glutamine, both promoted the induced accumulation of isoflavone 7-O-glucosides and isoflavone 7-O-(6″-O-malonyl-β-glucosides), but not isoflavone aglycones in the leaves. These results demonstrate that at least two separate reactions are involved in elicitor-induced soybean leaf responses to the S. litura gut contents: one is the de novo biosynthesis of isoflavone conjugates induced by FACs, and the other is the hydrolysis of the isoflavone conjugates to yield isoflavone aglycones. Gut content extracts alone displayed no hydrolytic activity. The quantitative analysis of isoflavone de novo biosynthesis, with respect to both aglycones and conjugates, affords a useful bioassay system for the discovery of additional plant defense elicitor(s) in S. litura gut contents that specifically promote hydrolysis of isoflavone conjugates.  相似文献   

6.
Three amidosulfobetaine surfactants were synthesized namely: 3-(N-pentadecanamidopropyl-N,N-dimethyl ammonium) propanesulfonate (2a); 3-(N-heptadecanamidopropyl-N,N-dimethyl ammonium) propanesulfonate (2b), and 3-(N-nonadecanamidopropyl-N,N-dimethyl ammonium) propanesulfonate (2c). These surfactants were prepared by direct amidation of commercially available fatty acids with 3-(dimethylamino)-1-propylamine and subsequent reaction with 1,3-propanesultone to obtain quaternary ammonium salts. The synthesized surfactants were characterized by IR, NMR and mass spectrometry. Thermogravimetric analysis (TGA) results showed that the synthesized surfactants have excellent thermal stability with no major thermal degradation below 300 °C. The critical micelle concentration (CMC) values of the surfactants 2a and 2b were found to be 2.2 × 10?4 and 1.04 × 10?4 mol/L, and the corresponding surface tension (γCMC) values were 33.14 and 34.89 mN m?1, respectively. The surfactants exhibit excellent surface properties, which are comparable with conventional surfactants. The intrinsic viscosity of surfactant (2b) was studied at various temperatures and concentrations of multi-component brine solution. The plot of natural logarithm of relative viscosity versus surfactant concentration obtained from Higiro et al. model best fit the surfactant behavior. Due to good salt resistance, excellent surface properties and thermal stability, the synthesized surfactant has potential to be used in various oil field applications such as enhanced oil recovery, fracturing, acid diversion, and well stimulation.  相似文献   

7.
The surface activity and thermodynamic properties of adsorption at the air–water interface of two series of cationic surfactants based on isourea: the O-dodecyl-N,N′-diisopropylisourea hydrochloride, hydrobromide, and hydroiodide and the O-tridecafluorooctyl-N,N′-diisopropylisourea hydrochloride and hydrobromide were studied. The effect of structural parameters as the nature of the halide counter ion and the nature of the non-polar chain on the surface activity and thermodynamic properties of adsorption were investigated. The surface parameters, the maximum surface excess concentration (Γ max), the minimum area per molecule (A min) at the aqueous solution-air interface, effectiveness of surface tension reduction (πCMC), and efficiency of surface tension reduction (pC 20) were estimated. The standard Gibbs free energy of adsorption, (ΔG°ads) change has been calculated at different temperatures.  相似文献   

8.
Three new amphiphilic compounds i.e., n-decyl-3-methylpyridinium bromide (a), n-dodecyl-3-methylpyridinium bromide (b), and n-tetradecyl-3-methylpyridinium bromide (c), have been synthesized by condensation reaction and characterized by NMR (1H, 13C) and FTIR spectroscopic techniques. The micellization behavior of the compounds has been studied in ethanol employing conductometry and UV/visible spectroscopy. The critical micellization concentration (CMC) values for compound a, b and c was found to be 0.31, 0.29 and 0.27 m mol L?1, respectively. Effect of temperature on the CMC was checked in the range of 298-318 K. The thermodynamic parameters such as ΔG, ΔH and ΔS of the micellization process of these surfactants were computed. The negative values of ΔG and positive values of ΔH indicated the spontaneous and endothermic nature of the micellization process. Antimicrobial activities of these amphiphiles showed significant activity against different bacterial strains.  相似文献   

9.
A novel trisiloxane gemini nonionic surfactant was synthesized by the reaction of 3-(diethoxy(methyl)silyl)propan-1-amine with hexamethyldisiloxane to get 3-(trisiloxane)propan-1-amine, which was further reacted with glutaroyl dichloride to form the surfactant molecule, N 1,N 5-bis(3-(trisiloxane)propyl)glutaramide (3). Some related compounds were also prepared, including N 1,N 5-bis (3-(trimethoxysilyl)propyl) glutaramide (1), and N 1,N 5-bis(3-(diethoxy(methyl)silyl)propyl)glutaramide (2). All prepared compounds were analyzed by IR, 1H-NMR and 13C-NMR to confirm their structures. Their interfacial activities, including surface tension and wetting ability, were measured. These surface activities were compared each other and a discussion was carried out on how the organic groups attached on the silicone atoms affect their surface tension and wetting ability. To explain the superior surface activities of the molecules 3, a hypothesis was proposed about a cyclic hydrophobic core area that could be formed by the two hydrophobic chains and the linker of the gemini molecule due to the dispersion force (Van der Waals force) between the two trisiloxane moieties, which close the hydrophobic cycle inside the molecule.  相似文献   

10.
The self-organization and aggregation behavior of a surface active ionic liquid (SAIL) 1-methyl-3-octylimidazolium chloride [C8mim]Cl, was investigated in aqueous solutions of alcohols 1,2-propanediol and 1-propanol in different compositions using conductivity, surface tension and fluorescence measurements at room temperature. This surface active ionic liquid was synthesized by the reaction of 1-methylimidazole with 1-chlorooctane. Fluorescence spectroscopy was employed to get detailed insight into the local microenvironment of the aggregates, critical aggregation concentrations (CAC) and aggregation number (N agg.). Degree of ionization (α), CAC and various thermodynamic parameters like the standard Gibbs free energy of aggregation (ΔG agg. 0 ), standard enthalpy of aggregation (ΔH agg. 0 ) and standard entropy of aggregation (ΔS agg. 0 ) were calculated using conductivity measurements at different temperatures (288.15, 298.15 and 308.15 K). The surface activity of the IL in various mixed solvents was evaluated from surface tension measurements by calculating various surface parameters like the minimum surface area occupied by a single ionic liquid molecule (A min), adsorption efficiency (pC 20), maximum excess concentration at the surface (Γ max), effectiveness of surface tension reduction(Π CAC), surface tension at CAC (γ CAC), p (packing parameter) and CAC at different compositions. Increases in the CAC values were observed with the increase in the amount of alcohols which is attributed to the balancing between electrostatic and hydrophobic interactions. The results from different techniques show that the CAC increases with increase in the amount of the alcohol which is due to the solubilization of the IL molecules which delays the aggregation process. This shows that the spontaneity of the aggregation process of IL decreases with the increase in the concentration of alcohols in water.  相似文献   

11.
Radical copolymerizations of N-vinyl-2-pyrrolidone (VP) with isostructural analogs of maleic anhydride (MA), such as citraconic anhydride (CA) and N-substituted maleimides [maleimide (MI), N-ethylmaleimide (EMI) and N-phenylmaleimide (PhMI)] were studied. Compositions of copolymers synthesized in a wide range of monomer feed ratios were determined by alkali titration (for anhydride copolymers), FTIR and 1H NMR spectroscopy using 1495 and 630 cm-1 (for VP-MI), 1289 and 1225 cm-1 (for VP-EMI) and 1050 and 3067 cm-1 (for VP-PhMI) analytical bands and integral areas of CH2 (pyrrolidone ring) and CH (MI), CH3 (EMI) and CH= (benzene ring in PhMI) groups, respectively. Electron-donor VP monomer was found to have substantially different reactivities in the radical copolymerization with MA, CA and N-substituted (H, C2H5 and phenyl) malemides as electron-acceptor comonomers. Effects of H-bonding and N→O=C coordination on the monomer reactivity ratios were evaluated. Tendency to alternation of the monomer pairs increases in the order of VP–MA > VP–CA > VP-MI > VP-PhMI > VP-EMI. Structure-thermal property-relationship for the synthesized copolymers was also studied.  相似文献   

12.
Electrical properties of a Au/N-(5-{cyano-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-hydrazono]-methyl}-[1,3,4]thiadiazol-2-yl)-benzamide (ACTB)/p-Si/Al heterojunction have been investigated by using current-voltage (I-V) and capacitance-voltage (C-V) measurements. At forward voltages V≤0.36 volt, thermionic emission theory was used to determine the ideality factor and zero-bias barrier height of the device. Although, the device is found to be nonideal in showing an ideality factor of 1.84, it is found to have a modified barrier height value (0.71 eV) compared to a conventional Au/p-Si contact. Cheung functions were used to obtain the barrier height, series resistance and ideality factor of the diode. The current is found to be controlled by the space charge limited current (SCLC) dominated by exponential trap distribution in the voltage range 0.36<V≤1.56 and SCLC dominated by a single trap in the voltage range 1.56<V ≤2. The I-V characteristics in the reverse direction are analyzed in terms of Poole–Frenkel and Schottky mechanisms. C-V characteristics show that the junction is of an abrupt nature in which the built-in potential, barrier height and charge carrier concentration are estimated. Based on combined I-V and C-V characteristics, the interface state density of the heterojunction has also been calculated. The ACTB film can be used in the device modification applications of the conventional Au/p-Si diodes.  相似文献   

13.
Barth syndrome (BTHS) is an X-linked genetic disease resulting in loss of cardiolipin (Ptd2Gro). Patients may be predisposed to hypoglycemia and exhibit increases in whole-body glucose disposal rates and a higher fat mass percentage. We examined the reasons for this in BTHS lymphoblasts. BTHS lymphoblasts exhibited a 60% increase (p < 0.004) in 2-[1,2-3H(N)]deoxy-d-glucose uptake, a 40% increase (p < 0.01) in glucose transporter-3 protein expression, an increase in phosphorylated-adenosine monophosphate kinase (AMPK) and a 58% increase (p < 0.001) in the phosphorylated-AMPK/AMPK ratio compared to controls. In addition, BTHS lymphoblasts exhibited a 90% (p < 0.001) increase in d-[U-14C]glucose incorporated into 1,2,3-triacyl-sn-glycerol (TAG) and a 29% increase (p < 0.025) in 1,2-diacyl-sn-glycerol acyltransferase-2 activity compared to controls. Thus, BTHS lymphoblasts exhibit increased glucose transport and increased glucose utilization for TAG synthesis. These results may, in part, explain why BTHS patients exhibit an increase in whole-body glucose disposal rates, may be predisposed to hypoglycemia and exhibit a higher fat mass percentage.  相似文献   

14.
We present evidence that cerambycid species that are supposed mimics of vespid wasps also mimic their model’s odor by producing spiroacetals, common constituents of vespid alarm pheromones. Adults of the North American cerambycids Megacyllene caryae (Gahan) and Megacyllene robiniae (Forster) are conspicuously patterned yellow and black, and are believed to be mimics of aculeate Hymenoptera, such as species of Vespula and Polistes. Adult males of M. caryae produce an aggregation-sex pheromone, but both sexes produce a pungent odor when handled, which has been assumed to be a defensive response. Headspace aerations of agitated females of M. caryae contained 16 compounds with mass spectra characteristic of spiroacetals of eight distinct chemical structures, with the dominant compound being (7E,2E)-7-ethyl-2-methyl-1,6-dioxaspiro[4.5]decane. Headspace samples of agitated males of M. caryae contained five of the same components, with the same dominant compound. Females of M. robiniae produced six different spiroacetals, one of which was not produced by M. caryae, (2E,7E)-2-ethyl-7-methyl-1,6-dioxaspiro[4.5]decane, and five that were shared with M. caryae, including the dominant (2E,8E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane. The latter compound is the sole spiroacetal produced by both males and females of a South American cerambycid species, Callisphyris apicicornis (Fairmaire & Germain), which is also thought to be a wasp mimic. Preliminary work also identified spiroacetals of similar or identical structure released by vespid wasps that co-occur with the Megacyllene species.  相似文献   

15.
This work presents the synthesis of corrosion inhibitor [1H-benzotriazole (BTA)]-loaded hollow silica nanocapsules with magnesium hydroxide precipitate in the shells (HSNs-M/BTA) through inverse microemulsion (W/O) polymerization. TEM and Brunauer–Emmett–Teller (BET) measurements indicate that the silica nanocapsules possess voids in the inner part and mesoporous on the surface. The actual loading capacity of BTA is 287.17 mg (BTA)/1 g (HSNs-M/BTA). The results of UV absorption spectra show that the release of BTA can be triggered by the changing of pH in the corrosion solution. The anticorrosive SiO x /ZrO x coatings embedded with hydrophobically modified HSNs-M have a better waterproof performance since the water contact angle can reach 140°. In comparison to the passive SiO x /ZrO x coatings with or without BTA, the enhanced corrosion protection performance of this developed anticorrosive system was observed by both electrochemical impedance spectroscopy and Tafel analysis. The fabrication of nanocapsules with corrosion inhibitors is promising as an intelligent element in protective coatings in the future.  相似文献   

16.
In this study, a novel photocatalyst, pentarylenebis(dicarboximide) dye: (1,6,13,18-tetra(4-(2,3,3-trimethylbut-2-yl)phenoxy)-N,N’-(2,6-diisopropylphenyl)-pentarylene-3,4,15,16-tetracarboxidiimide) (TTPDPT), was first used in metal-free photoinduced atom transfer radical polymerization (ATRP) of methyl methacrylates (MMA). The initiator was methyl α-bromoisobutyrate (MBI) and the light source was mild near-infrared (NIR) light irradiation (λmax?≈?870 nm). The TTPDPT-mediated ATRP relies on in situ photoreduction of a MBI through an electron transfer process to generate the desired alkyl radical, which could induce polymerization of the monomer. The photoinduced metal-free ATRP of MMA shows typical characteristics of controlled free radical polymerization, showing the linear evolution of number-average molecular weight (Mn,GPC) with monomer conversion, where polymers with predetermined degree of polymerization have well-controlled molecular weights and narrow molecular weight distribution (Mw/Mn). The photoinduced metal-free ATRP of MMA can be carried out with just ppm level of TTPDPT. The polymerization initiation and propagation can be operated by the aid of pulsed light sequences while NIR light source was used to promote carbon–carbon bond formation and to produce poly(methyl methacrylate) (PMMA) with Mw/Mn as low as 1.5. The synthesized PMMA was characterized by 1H nuclear magnetic resonance (1H NMR). The resultant PMMA contained a bromide end group that can be employed to reinitiate styrene polymerization to produce block copolymers through chain extension experiments.  相似文献   

17.
Biogeochemical processes regulating cropland soil nitrous oxide (N2O) emissions are complex, and the controlling factors need to be better understood, especially for seasonal variation after fertilization. Seasonal patterns of N2O emissions and abundances of archaeal ammonia monooxygenase (amoA), bacterial amoA, nitrate reductase (narG), nitrite reductase (nirS/nirK), and nitrous oxide reductase (nosZ) genes in long-term fertilized wheat–maize soils have been studied to understand the roles of microbes in N2O emissions. The results showed that fertilization greatly stimulated N2O emission with higher values in pig manure-treated soil (OM, 2.88 kg N ha?1 year?1) than in straw-returned (CRNPK, 0.79 kg N ha?1 year?1) and mineral fertilizer-treated (NPK, 0.90 kg N ha?1 year?1) soils. Most (52.2–88.9%) cumulative N2O emissions occurred within 3 weeks after fertilization. Meanwhile, N2O emissions within 3 weeks after fertilization showed a positive correlation with narG gene copy number and a negative correlation with soil NO3? contents. The abundances of narG and nosZ genes had larger direct effects (1.06) than ammonium oxidizers (0.42) on N2O emissions according to partial least squares path modeling. Stepwise multiple regression also showed that log narG was a predictor variable for N2O emissions. This study suggested that denitrification was the major process responsible for N2O emissions within 3 weeks after fertilization. During the remaining period of crop growth, insufficient N substrate and low temperature became the primary limiting factors for N2O emission according to the results of the regression models.  相似文献   

18.
Using theory of turbulence, particularly using turbulence spectrum analysis, the relations ε* = ε/(u 4/ν) = const., vK/u = const. and Λ/ηK = const. were derived. Assuming that u ∝ (Nd) from this it follows that the widely used dimensionless local turbulent energy dissipation rate defined as ε/((N 3 d 2) is directly proportional to impeller Reynolds number, i.e. ε/((N 3 d 2) ∝ Re, and length scale ratio Λ/d is indirectly proportional to impeller Reynolds number, i.e. Λ/d ∝ Re–1, in an agitated vessel at high Reynolds number. The relations obtained by turbulence spectrum analysis were used for estimation of local turbulent energy dissipation rates experimentally measured by Ståhl Wernersson and Trägårdh (1998, 1999) covering the range of Re = 87600–910200 and own experimental data covering the range of Re = 50000–189000. The experiments have been performed in tanks of 300 mm and 400 mm in the inner diameter for three different viscosities and for various impeller rotational speeds.  相似文献   

19.
A series of Cu2+-sensing nanofibers has been successfully prepared by electrospinning of poly[(N-isopropylacrylamide)-co-(N-hydroxymethyl acrylamide)-co-(4-rhodamine hydrazonomethyl-3-hydroxy-phenyl methacrylate)] [poly(NIPAAm-co-NMA-co-RHPMA), PNNR] random copolymers. These PNNR copolymers were synthesized by free radical copolymerization of three monomers, thermo-responsive NIPAAm, chemically crosslinkable NMA and Cu2+-sensing RHPMA, with the composition of RHPMA in the range of 2.4–16.3 wt%. In acidic environments, the PNNR copolymers showed highly selective and sensitive recognition and displayed “ON-OFF” fluorescence toward Cu2+ both in solution and in solid state (thin films and nanofibers). From the quantitative analysis via Stern-Volmer plots, PNNR nanofibers exhibited comparable Stern-Volmer constants as those of PNNR solutions in the order of 104 M?1, which are much higher than those of PNNR thin films. The enhanced sensitivity of PNNR electrospun nanofibers is attributed to their higher surface area compared to dip-coating films. The PNNR nanofibers also exhibited an on/off switchable sensing behavior in response to temperature change due to the hydrophilic-hydrophobic transition of PNIPAAm. In addition, the binding of PNNR with Cu2+ is chemically reversible both in solution and in nanofibers with the treatment of Na4EDTA.  相似文献   

20.
Mesoporous nickel oxide (NiO) nanoparticles were synthesized by the thermal decomposition reaction of Ni(NO3)2·9H2O using oxalic acid dihydrate as the mesoporous template reagent. The pore structure of nanocrystals could be controlled by the precursor to oxalic acid dihydrate molar ratio, thermal decomposition temperature and thermal decomposition time. The structural characteristic and textural properties of resultant nickel oxide nanocrytals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption–desorption isotherm and temperature programmed reduction. The results showed that the most excellently mesoporous nickel oxide particles (m-Ni-1-4) with developed wormlike pores were prepared under the conditions of the mixed equimolar precursor and oxalic acid and calcined for 4 h at 400 °C. The specific surface area and pore volume of m-Ni-1-4 are 236 m2 g?1 and 0.42 cm3 g?1, respectively. Over m-Ni-1-4 at space velocity = 20,000 mL g?1 h?1, the conversions of toluene and formaldehyde achieved 90 % at 242 and 160 °C, respectively. It is concluded that the reactant thermal decomposition with oxalic acid assist is a key step to improve the mesoporous quality of the nickel oxide materials, the developed mesoporous architecture, high surface area, low temperature reducibility and coexistence of multiple oxidation state nickel species for the excellent catalytic performance of m-Ni-1-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号