首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, various ZSM-5/MCM-41 micro/mesoporous zeolite composites have been prepared by alkalidesilication and surfactant-directed recrystallization of ZSM-5. The effects of particle size and Si/Al ratio of initial ZSM-5 zeolites on the structure and catalytic performance of ZSM-5/MCM-41 composites are studied. The results of XRD, TEM N2-adsorption-desorption, NH3-TPD and in situ FT-IR revealed that ordered hexagonal MCM-41 mesopores with 3-4 nm pore size were formed around ZSM-5 crystals, and the specific surface area and mesopore volume of composites increased with increasing the Si/Al ratio of initial ZSM-5. Catalytic cracking of n-dodecane (550 ℃, 4 MPa) showed that the ZSM-5/MCM-41 composites obtained from the high Si/Al ratio and nano-sized initial ZSM-5 zeolites exhibited superior catalytic performance, with the improvement higher than 87% in the catalytic activities and 21% in the deactivation rate compared with untreated zeolites. This could be ascribed to their suitable pore structure, which enhanced the diffusion of reactant molecules in pores of catalysts.  相似文献   

2.
A series of mesoporous sulfated silica-zirconia materials with various Si/Zr molar ratios (2.0–5.0) have been prepared using tri-block copolymer as a template, which were characterized by X-ray diffraction, TEM, nitrogen adsorption, UV-Vis diffuse reflectance spectroscopy, infrared spectroscopy, thermal gravimetric analysis, and catalytic reactions. XRD patterns displayed that ordered mesoporous sulfated silica-zirconia materials were obtained when the molar ratio of Si/Zr was not less than 4.0 (ZrSiS-4 and ZrSiS-5). When the molar ratio of Si/Zr was less than 4.0, the samples had a separated phase of amorphous sulfated zirconia (ZrSiS-2 and ZrSiS-3). Furthermore, TEM images (ZrSiS-4 and ZrSiS-5) revealed that the mesostructure of these materials were highly ordered. N2 adsorption (ZrSiS-4 and ZrSiS-5) exhibited typical IV adsorption isotherms and uniform pore distribution. UV-Vis reflectance and IR spectra suggested (ZrSiS-4 and ZrSiS-5) that Zr atoms were incorporated into the walls of mesoporous silica. Cracking reactions of cumene and 1,3,5-triisopropylbenzene (TIPB) showed that, the ordered mesoporous sulfated silica-zirconia materials were very active in acidic catalytic reactions, especially for the cracking of large molecules.  相似文献   

3.

Abstract  

Al-containing SBA-16 (with different Si/Al molar ratios) was prepared by an easy post-grafting method using F127 as structure-directing agent and aluminum isopropoxide as Al source. The structure of the solid catalyst was fully characterized by X-ray diffraction (XRD) analysis, N2 adsorption, scanning electron micrographs (SEM), transmission electron micrographs (TEM) and 27Al MAS NMR. The results indicated that the materials possess three-dimension caged-like mesostructure and Al was successfully incorporated into the SBA-16 framework. The acid properties have been estimated by FT-IR of pyridine adsorption (Py-IR). Among various Si/Al ratios, Al/SBA-16 with Si/Al ratio 20 performed good catalytic activity for the tert-butylation of phenol. Compared to hexagonal mesoporous Al/SBA-15, Al/SBA-16 showed higher catalytic properties due to its cage-like mesostructure, which could make the active acid sites more accessible to the reactant.  相似文献   

4.
Significant enhancement in the performance of incorporation of high content of aluminum within hierarchical mesoporous SBA-15 has been achieved by direct route using urea tetrachloroaluminate ionic liquid as novel aluminum source. The fabricated materials were fully characterized by N2 sorption isotherms, powder X-ray diffraction (XRD), FT-IR, 27Al MAS NMR, XRF, HRTEM and FESEM. The acidic properties of these materials have been examined using NH3-TPD. The catalytic performance was investigated using cumene cracking and the esterification reaction as a probe molecules to estimate the acidity of the material. It is worth noting that the ionic liquid with accomplished Al–O–Si bonds is an efficient precursor to synthesis AlSBA-15 with high aluminum content (nSi/mAl?=?7) without destroying the structural order of the material in acidic medium. 27Al MAS NMR spectra of AlSBA-15 show that all aluminum species were incorporated into the SBA-15 framework with nSi/mAl ratio up to 7. Overall, this work emphasize that the AlSBA-15 materials contain Bronsted and Lewis acid sites with medium acidity which makes them adequate to be adopted as acid catalysts in heterogeneous catalysis.  相似文献   

5.
Al-MSU-S mesoporous molecular sieve catalysts with Al contents ranging from 2.5 to 50 mol% have been prepared from “zeolite seed” solutions and C16 TMABr templates. Hexagonal mesoporous structures are formed that exhibit significantly higher amounts of tetrahedrally coordinated Al than analogous Al-MCM-41 catalysts. The Al-MSU-S catalysts also possess smaller pores than corresponding Al-MCM-41 materials. Catalytic cumene cracking activity is very high over the low Al content materials (2.5 mol%), approaching that of zeolite ZSM-5, but the catalytic activity decreases with increasing Al. As the Al content is increased, the Al atoms remain tetrahedrally coordinated but become less accessible to the cumene reagent. This and knowledge of zeolite synthesis suggest the formation of zeolite seeds other than the large pore LZY, such as the small pore LTA structure.  相似文献   

6.
介孔材料Al-SBA-15的合成研究进展   总被引:1,自引:0,他引:1  
李祥珍  王晓钟  刘瑜  陈伟  黄璐 《化工进展》2013,32(7):1555-1563
Al掺杂的介孔SBA-15材料不仅保持了介孔SBA-15材料原有的结构特征,还赋予了材料新的催化活性位,成为近年来介孔材料领域最为活跃的研究对象之一。本文详细阐述了近十几年来Al-SBA-15介孔材料的研究进展,比较了各合成方法之间的区别,并讨论了Si/Al摩尔比、合成方法和反应条件等因素对Al原子嵌入SBA-15介孔骨架的效率以及介孔材料的有序性、稳定性和酸性的影响。同时总结出加深对合成机理的研究,优化合成过程,使用较简单且高效的方法制备具有完全晶化骨架和较高Al含量的介孔Al-SBA-15是未来介孔Al-SBA-15合成研究的新方向。  相似文献   

7.

Abstract  

A novel micro-micro/mesoporous silicoaluminophosphate ZSM-5-SAPO-5/MCM-41 (define as MZS-5) composite material with regular spherical morphology was synthesized through a novel process of the self-assembly of CTAB surfactant micelles with silica-alumina source which originated from the alkaline treatment of ZSM-5 zeolite. The physical properties of the MZS-5 composite material were characterized by XRD, FT-IR, Nitrogen adsorption–desorption, SEM and Py-FTIR techniques. Catalytic tests showed that the MZS-5 composite catalyst exhibited higher catalytic activity compared with the conventional microporous ZSM-5, SAPO-5 zeolite and mesoporous Al-MCM-41 molecular sieve for catalytic cracking of 1,3,5-triisopropylbenzene (TIPB). The remarkable catalytic reactivity of TIPB molecules was mainly attributed to the presence of the hierarchical zeolite structure. In the MZS-5 structure, the mesopores provided pathways for transportation of larger molecules and the microporous ZSM-5 and SAPO-5 zeolite provided acidic sites for catalytic activity.  相似文献   

8.
Al-SBA-15 of varying Si/Al ratios in the range 11.4–78.4 was synthesized using tri-block copolymer P123. The calcined materials were examined by XRD, pore size distribution, surface area, 27Al NMR spectroscopy. The acidity and acid strength distribution were studied using microcalorimetric adsorption of NH3. The acidic properties were also examined by cumene cracking reaction as a function of Si/Al ratios. Systematic variation of acidity and activity was observed as a function of Si/Al ratio. The initial heats of NH3 adsorption correlated well with activity indicate that acid sites with ΔH > 100 kJ/mole is responsible for cumene cracking activity. Linear correlations were obtained with total acidity and cumene cracking activities. The tetrahedral aluminum was found to be responsible for the observed acidities and catalytic activities.  相似文献   

9.
Nitrogen-containing carbon composite materials composed of mesoporous carbon CMK-5 and carbon nanotubes (CNTs) were prepared by the chemical vapor deposition method with Fe(NO3)3-impregnated SBA-15 as template and pyridine as the carbon precursor. The Fe nanoparticles confined in the channels of SBA-15 induced the formation of mesoporous carbon characteristic of CMK-5, whereas Fe particles homogeneously dispersed on the external surface of SBA-15 served as catalysts for CNTs growth. The contents of CNTs, the N doping level and the microstruture of the carbon composite were closely related to the initial Fe/Si atomic ratio in SBA-15 template. Incorporation of CNTs in the composite was found to substantially reduce the electric resistance, leading to the composite materials exhibiting excellent rate-performance. A maximum specific capacitance of 208 F/g and a power density of 10 kW/kg were achieved in 6.0 mol/L KOH aqueous electrolyte when these carbon composites were applied as supercapacitor electrodes. Moreover, the composite electrode also exhibited good electrochemical stability with no capacitance loss after 1000 cycles of galvanostatic charge-discharge process.  相似文献   

10.
The potential application of hybrid ZSM-5/Al-MCM-41 zeolitic-mesostructured materials as supports of metallocene polymerization catalysts has been investigated and compared with the behaviour of standard mesoporous Al-MCM-41 and microporous ZSM-5 samples. Hybrid zeolitic-mesostructured solids were prepared from zeolite seeds obtained with different Si/Al molar ratios (15, 30 and 60), which were assembled around cetyltrimethylammonium bromide (CTAB) micelles to obtain hybrid materials having a combination of both zeolitic and mesostructured features. (nBuCp)2ZrCl2/MAO catalytic system was impregnated onto the above mentioned solid supports and tested in ethylene polymerization at 70 °C and 5 bar of ethylene pressure. Supports and heterogeneous catalysts were characterized by X-ray powder diffraction, nitrogen adsorption-desorption isotherms at 77 K, transmission electron microscopy, 27Al-MAS-NMR, ICP-atomic emission spectroscopy and UV-vis spectroscopy.Catalysts supported over hybrid ZSM-5/Al-MCM-41 (Si/Al = 30-60) exhibited the best catalytic activity followed by those supported on Al-MCM-41 (Si/Al = 30-60). However, catalyst supported on ZSM-5 gave lower polymerization activity because of its microporous structure with narrower pores and lower textural properties than hybrid and mesoporous materials.Although higher acid site population shown by hybrid materials could contribute to the stabilization of the metallocene system on the support, in this case their better catalytic performance is mainly ascribed to the larger textural properties.  相似文献   

11.
通过表面响应法,以Box-Behnken试验原理,对生物质(玉米秸秆)的非催化热解进行三因素试验,其中生物油产率为响应值,温度、升温速率、氮气流速为自变量,确定最大生物油产率的工艺参数进行催化热解。以硅酸四乙酯为硅源,通过水热合成法合成了复合催化剂ZSM-5/SBA-15,并进行玉米秸秆的微波催化热解产物分析。通过XRD、SEM、TEM、NH3-TPD进行催化剂表征,得到复合催化剂不仅具有介孔催化剂SBA-15的性质,且兼备微孔催化剂ZSM-5的性质。通过GC-MS分析,复合催化剂ZSM-5/SBA-15的加入,相比非催化热解烃类收率(6.42%)和酚类收率(39.65%)都有所增加。  相似文献   

12.
Hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios(Hier-ZSM-5-x,where x=50,100,150 and 200)were synthesized using an ordered mesoporous carbon-silica composite as hard template.Hier-ZSM-5-x exhibits improved mass transport properties,excellent mechanical and hydrothermal stability,and higher catalytic activity than commercial bulk zeolites in the benzyl alcohol self-etherification reaction.Results show that a decrease in the Si/Al ratio in hierarchical single-crystal ZSM-5 zeolites leads to a significant increase in the acidity and the density of micropores,which increases the final catalytic conversion.The effect of porous hierarchy on the diffusion of active sites and the final catalytic activity was also studied by comparing the catalytic conversion after selectively designed poisoned acid sites.These poisoned Hier-ZSM-5-x shows much higher catalytic conversion than the poisoned commercial ZSM-5 zeolite,which indicates that the numerous intracrystalline mesopores significantly reduce the diffusion path of the reactant,leading to the faster diffusion inside the zeolite to contact with the acid sites in the micropores predominating in ZSM-5 zeolites.This study can be extended to develop a series of hierarchical single-crystal zeolites with expected catalytic performance.  相似文献   

13.
通过碱处理和添加助剂Zn对微米ZSM-5和纳米ZSM-5进行改性,获得具有不同孔结构和酸性质的催化剂。采用氮气吸附、X射线衍射、透射电镜、氨气程序升温脱附(NH3-TPD)和热重(TG)技术对不同催化剂进行表征,结合催化性能评价,考察晶粒尺寸、介孔结构和Zn助剂对其催化甲醇制芳烃(MTA)反应性能的影响。结果表明,碱处理引入介孔后,孔体积均增大,总酸量都降低;微米催化剂外表面积显著增加,但纳米催化剂外表面积却有所下降;负载金属Zn后,比表面积、结晶度和总酸量都降低。在P=0.5MPa、T=430℃、WHSV=2h-1的反应条件下,负载Zn的微米催化剂由于具有较高的酸量,其芳烃与苯、甲苯和二甲苯(BTX)选择性最高,分别为85.11%和66.85%,但是稳定性较差,催化寿命仅为12h。但相较于未改性的纳米ZSM-5原粉来说,碱处理后又负载Zn的催化剂,液烃中芳烃选择性从纳米原粉的65.20%增加到80.82%,BTX选择性从纳米原粉的42.30%提高到49.56%,而在甲醇进样量增加4倍,即WHSV=8h-1时,催化剂仍显示出较好的稳定性,寿命可达84h。可见,在小晶粒ZSM-5上碱处理扩孔并引入Zn助剂可以有效提高甲醇制芳烃反应性能。  相似文献   

14.
桑宇  邢爱华 《工业催化》2016,24(11):41-51
采用低温水热晶化法,以四丙基氢氧化铵为模板剂,分别使用98%粗孔固体硅胶和30%硅溶胶为硅源,制备不同硅铝物质的量比的纳米级ZSM-5分子筛,研究硅源对其物化结构及甲醇转化制丙烯与丁烯催化性能的影响。结果表明,硅源种类影响ZSM-5分子筛的结构及铝分布,进而影响其酸性和催化性能。固体硅胶为硅源,有利于形成弱酸性位点;硅溶胶为硅源,有利于形成强酸性位点。在相同硅铝物质的量比时,以固体硅胶为硅源的ZSM-5分子筛的总酸量小于以硅溶胶为硅源的样品。无论使用何种硅源,对ZSM-5分子筛的晶型结构影响不大,且ZSM-5分子筛颗粒形貌均呈现为由小晶粒堆积成(500~1 000)nm的类球形颗粒。以硅溶胶为硅源制备的样品颗粒尺寸大于以固体硅胶为硅源制备的样品。硅铝物质的量比为400时,两种硅源合成分子筛的丙烯与丁烯的选择性相近,但以硅溶胶为硅源的ZSM-5分子筛的寿命更长。  相似文献   

15.
通过调控合成方式、改变原料比例,制备纳米棒状、纳米球状、椭球状、圆柱状及棋子状等不同形貌及硅铝比的ZSM-5分子筛,并对其催化甲缩醛气相羰基化反应性能进行详细考察。在110℃、0.6 MPa、CO与甲缩醛流速分别为100 mL·min-1和0.035 mL·min-1条件下,硅铝物质的量比为30的棋子形ZSM-5分子筛表现出最佳的催化活性,甲缩醛转化率达31.9%,目标产物甲氧基乙酸甲脂选择性为21.4%。通过XRD、SEM、XRF、Py-FTIR、NH 3-TPD以及27 Al MAS NMR等对合成的分子筛进行详细表征,发现调控分子筛形貌及硅铝物质的量比可改变ZSM-5分子筛的酸性特征,并改变分子筛骨架中活性铝物种分布。适量的中强B酸酸位及分子筛交叉孔道内较高比例的活性铝物种分布可能是硅铝物质的量比30的棋子形ZSM-5分子筛表现出较好催化活性的原因。  相似文献   

16.
W-modified HMS and SBA-15 mesoporous materials (Si/W molar ratio equal to 40) were synthesized using sodium tungstate as tungsten source. In order to prepare NiW catalysts these mesoporous materials were impregnated with an aqueous solution of nickel salt of 12-tungstophosphoric acid Ni3/2PW12O40. The synthesized W-HMS, W-SBA-15 materials and NiW catalysts have been characterized by SBET, XRD, UV–Vis DRS, FT-IR, TPD of NH3, 29Si MAS NMR, SEM and HRTEM. The influence of these particular supports on catalytic activity of NiW catalysts was studied in the reaction of hydrodesulfurization (HDS) of thiophene. The results from the FT-IR and UV–Vis DR spectroscopy confirm incorporation of W into the HMS and SBA-15 structures. Additionally 29Si MAS NMR measurements revealed relatively stronger effect of W ion incorporation in HMS structure on degree of silica cross-linking as compared to the effect of W ion incorporation in SBA-15 structure. The catalytic study showed that both W-HMS and W-SBA-15 materials modified with W are good supports for NiW catalysts in the HDS reaction of thiophene. The catalysts show lower selectivity for butanes than a reference NiW/γ-Al2O3 catalyst leveling of about 10% for chosen experimental conditions.  相似文献   

17.
以ZSM-5分子筛、铝溶胶、硝酸钯、硝酸铂和水为原料制备分子筛浆料,采用真空抽提-一次涂覆法在堇青石蜂窝陶瓷载体表面制备出PdxPty-ZSM-5/Cordierite整体式催化剂,考察了Pd负载量、ZSM-5分子筛的硅铝比和Pd/Pt质量比对整体式催化剂的丙烷催化燃烧性能的影响,并用超声波振荡、SEM、XRD、H2-TPR和C3H8-TPD等手段对整体式催化剂进行了表征。当球磨时间为60 min,分子筛浆料固含量为38%时,整体式催化剂的涂层上载量可达到178 g?L-1,涂层脱落率低于0.5%。Pd2Pt3-ZSM-5/Cordierite整体式催化剂(贵金属总负载量为1.2 g?L-1)对于丙烷的催化燃烧具有较好的催化活性(T50=259℃,T90=323℃)和稳定性,具有良好的工业应用前景,其中较低的ZSM-5分子筛硅铝比以及Pd和Pt之间的相互作用增加了对丙烷的吸附能力和表面活性氧物种的数量,从而提高了整体式催化剂的催化活性。  相似文献   

18.
The influence of the composition and synthesis method on the low-coverage adsorption properties of C5–C9 n-alkanes on ZSM-5 zeolites was studied using the pulse chromatographic technique at temperatures between 200 and 400 °C. Experiments were performed with materials having Si/Al ratios between 12 and 400, synthesized with and without an organic template. For all ZSM-5 samples, the Henry adsorption constants increase exponentially with the carbon number, while zero-coverage adsorption enthalpies increase in a linear way. With decreasing Al content, the Henry constants and adsorption enthalpies decrease. An increase in adsorption enthalpy of 10.1 kJ/mol per added –CH2– group is observed for an Si/Al ratio of 400, while an increase of 12.1 kJ/mol is found for an Si/Al ratio of 15. The contribution to the adsorption entropy per carbon atom depends on the ZSM-5 composition and varies between 11.2 and 14.4 J/(mol K). A significant effect of the synthesis method on the Henry constants, adsorption enthalpies and entropies is observed. All ZSM-5 samples synthesized using organic templates show the same unique relationship between adsorption enthalpy and entropy, different from that of zeolites synthesized without organic template.  相似文献   

19.
Mesoporous silica structure SBA-15 and Al-containing SBA-15 (AlSBA) were synthesized and tested their activity in catalytic cracking of waste fatty acid mixture (palm oil based) in a fixed-bed micro-reactor. The catalytic activity of AlSBA was improved and more selective towards gasoline fraction present in the organic liquid product (OLP) as compared to mesoporous siliceous material SBA-15. Even though the hydrothermal stability of AlSBA was poorer but the sample with Si/Al ratio of 20 was found to be comparable with SBA-15. The hydrothermal stability of AlSBA was higher than AlMCM-41 with similar cracking activity and thus AlSBA is a more potential cracking catalyst.  相似文献   

20.
Gallium containing SBA-15 mesoporous materials with different Si/Ga ratio were synthesized using an in situ sol–gel procedure with an aqueous solution of Ga(NO3)3. The materials were characterised by means of elemental analysis, BET, XRD, TEM, and H/D isotope exchange techniques. It appears that depending their loading, stable Ga-species were either anchored to the siliceous matrix of SBA-15 or introduced in the framework via isomorphous substitution, thus generating acid properties in their host material.The catalytic activity of Ga-SBA-15 materials has been evaluated in the Friedel–Crafts acylation of anisole with benzoyl chloride and in the alkylation of benzene using benzyl chloride as alkylating agent. The activity of these catalysts was compared with the one of Ga-modified SBA-15 by post-treatment. A complete conversion of benzyl chloride over Ga-SBA-15 materials has been reached after 3 h of reaction with a 75% selectivity toward diphenylmethane. In contrast to Ga-samples prepared by post-treatment, in situ Ga-SBA-15 present a lower stability in the acylation reaction. However, the catalytic results indicate that Ga-SBA-15 mesoporous materials can be used as versatile and stable acid catalysts for Friedel–Crafts reactions with appropriate behavior depending on their preparation mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号