首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses the effect of break location on the break flow rate and break flow quality transitions during a small-break loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). Results from five experiments conducted at the ROSA-IV Large Scale Test Facility (LSTF) are compared for this purpose. These experiments simulated a 2-inch break at the lower plenum, upper head, pressurizer top, cold leg, and hot leg, respectively. The controlling phenomena for the break flow quality transitions in cold-leg and hot-leg break experiments are described.  相似文献   

2.
《Annals of Nuclear Energy》2002,29(5):571-583
The possibility of hot leg flooding during reflux condensation cooling after a small-break loss-of-coolant accident in a nuclear power plant is evaluated. The vapor and liquid velocities in hot leg and steam generator tubes are calculated during reflux condensation cooling with the accident scenarios of three typical break sizes, 0.13, 1.02 and 10.19% cold leg break. The effect of initial water level to counter-current flow limitation is taken into account. It is predicted that the hot leg flooding is precluded when all steam generators are available for heat removal. It is also shown that both hot leg flooding and SG flooding are possible under the operation of one steam generator. Therefore, it can be said that the occurrence of hot leg flooding under reflux condensation cooling is possible when the number of steam generators available for heat removal is limited.  相似文献   

3.
Loop seal clearing (LSC) is an important phenomenon for the safety of a pressurized water reactor (PWR) during a small-break loss-of-coolant accident (SBLOCA). The investigation on an LSC phenomenon of 4″, 6″, and 8.5″ break cold leg SBLOCAs simulated by Advanced thermal–hydraulic Test Loop for Accident Simulation (ATLAS) is performed using a Multi-dimensional Analysis of Reactor Safety-KINS Standard (MARS-KS) code. The LSC triggers earlier for larger break sizes during tests and calculations. LSCs occur during the simultaneous sudden decrease of steam condensation rate and the sudden increase of the break volumetric flow rate while the core volumetric flow rate increases slowly in calculation. The five phases of an SBLOCA transient are blowdown, pressure plateau, LSC, boil-off, and core-recovery phase, which can be identified by observing the volumetric flow rate and the time-dependent pressure variation. Loop seal refilling (LSR) occurs due to the trivial steam flow rate to the crossover leg inlet in calculation. The sensitivity analysis shows that the combination of countercurrent flow limitation (CCFL) model option for hot leg and steam generator (SG) inlet (Kutateladze, c = 1.36, m = 1), crossover legs (Kutateladze, c = 1, m = 1), and SG U-tubes (Wallis, c = 1, m = 1) provide good prediction of the LSC phenomenon and thermal-hydraulics behaviors in an SBLOCA transient by MARS-KS code calculation.  相似文献   

4.
Thermal-hydraulic phenomena in the hot leg of a pressurized water reactor during the small break loss-of-coolant accident (SBLOCA) are simulated and studied in this paper. They include the single-phase flow dynamics, the cocurrent stratified flow during the natural circulation conditions, and the countercurrent stratified flow during the reflux condensation conditions.Satisfactory results were obtained from the computations in comparison with the data from the German Upper Plenum Test Facility. It is revealed that the fluid flow exhibits strong multi-dimensional effects, i.e. an appreciable acceleration and deceleration along different regions of the hot leg, and a four-vortex secondary flow structure in the cross-section of the bend region. Cocurrent stratified flow under the natural circulation conditions is successfully simulated, presenting two different water transport mechanisms. Under the reflux condensation conditions, different countercurrent flow structures are found under the conditions away from and with the countercurrent flow limit.  相似文献   

5.
This paper deals with the natural circulation flow characteristics of the VVER-440 geometry at reduced coolant inventory. Special emphasis is on the flow rate of the primary circuits during the two-phase flow regime. For studying two-phase natural circulation flow phenomena in a VVER geometry a series of cold leg small break loss-of-coolant accident (SBLOCA) tests was carried out in the PArallel Channel TEst Loop (PACTEL), a 1/305 volumetrically scaled model of a VVER-440 reactor. The tests were conducted with break areas ranging from 0.1 to 1.5 % of the scaled cold leg cross-sectional area of the reference reactor. A partial failure of the high-pressure injection system (HPIS) was assumed. The tests reveal a trend towards an increasing primary circuit mass flow rate with decreasing inventory. This contradicts the findings of earlier tests in multi-loop VVER geometry. With single-loop facilities, increased mass flow rates at reduced inventories have been reported before. The increase of the two-phase flow rate turns out to be a consequence of the combined effect of break size, pressure range and secondary side feed and bleed procedure. The physical phenomena of flow stagnation in the primary circuits, system pressurization, asymmetric loop flows, and loop seal clearing and refilling take place during the natural circulation cooling process from single-phase into two-phase and boiler–condenser modes. In addition, flow reversal in the undermost tubes of the horizontal steam generators (SG) is observed. These phenomena are discussed briefly while a general insight into the course of the tests is presented.  相似文献   

6.
大破口失水事故时冷热段同时安注反应堆堆芯会更安全   总被引:1,自引:0,他引:1  
大破口失水事故时,安注系统由冷段注入的大量冷却剂从压力壳和吊兰之间的环形通道经破口流入安全壳,只有少量的冷却剂流入堆芯。如果把安注系统同时安装在冷段和热段同时进行安注,从热段注入的冷却剂带走了上腔室和堆芯内的较多热量而降低了上腔室内的压力,使冷段注入的冷却剂较容易流入堆芯。同时,从热段注入的部分冷却剂在上腔室内撞击在导向管上后,沿着导向管流入堆芯,堆芯得到的冷却剂比单一冷段安注时得到的冷却剂要多,堆芯会更安全  相似文献   

7.
A co-current, horizontally-stratified, two-phase flow would appear in the hot legs of a pressurized water reactor during a certain class of small-break loss-of-coolant accident. The liquid velocity in the hot leg may become so high that it exceeds the speed of interfacial waves. The condition for the onset of such a “supercritical” flow is studied in this paper by analyzing experimental data taken in the ROSA-IV Large Scale Test Facility. It is shown that the energy loss at the hot leg inlet needs to be taken into account to predict the above onset condition reasonably well.  相似文献   

8.
采用机理性严重事故最佳估算程序SCDAP/RELAP5/MOD3.2,以美国西屋公司Surry核电站为参考对象,建立了1个典型的3环路压水堆核电站的严重事故分析模型,分别对主回路冷段和热段发生25cm大破口失水事故(LBLOCA)导致的堆芯熔化事故进行研究分析。结果表明,压水堆发生大破口失水事故时,堆芯熔化进程较快,大量堆芯材料熔化并坍塌至下腔室,反应堆压力容器下封头失效较早,且主回路冷段破口比热段破口更为严重。  相似文献   

9.
Five 5% small-break loss-of-coolant accident (SBLOCA) experiments and two natural circulation experiments were conducted at the ROSA-IV Large Scale Test Facility (LSTF). The liquid holdup in the upflow side of steam generator (SG) U-tubes temporarily depressed the core collapsed liquid level below the bottom of core during the loop seal clearing in the cold-leg break SBLOCA tests. This phenomena was affected by the core power and core bypass but was affected little by the actuation of the high pressure injection system. Overall thermal-hydraulic phenomena in a loop seal line break test was similar to that of cold-leg break tests, however, the liquid holdup phenomena played a little role. In a hot-leg break test a temporary but rapid depression of the core liquid level was observed immediately after the initiation of accumulator injection which caused condensation and depressurization in the cold leg. The change of natural circulation flow rate with the decrease of primary system mass inventory was qualitatively the same as observed in Semiscale, LOBI and PKL. The SG effective overall heat transfer coefficient below the secondary-side collapsed liquid level was weakly dependent on the secondary side liquid level and the core power. The measured minimum heat transfer coefficient was 1.7 kW/m2K for the full secondary side mass inventory.  相似文献   

10.
AC600非能动安全壳冷却系统冷凝传热系数评价   总被引:1,自引:0,他引:1  
用AC600非能动安全壳冷却系统三维热工水力分析程序PCCSAC-MD,对几种常用的冷凝传热系数结构关系式进行了比较。这些结构关系式包括Uchida关系式,Gido-Koestl关系式,Tagami关系式和基于传热传质相似原理的关系式。  相似文献   

11.
核电厂大LOCA始发严重事故下氢气源项的敏感性分析   总被引:1,自引:0,他引:1  
郭连城  曹学武 《核动力工程》2007,28(5):69-74,108
采用MELCOR程序,以600MW级核电厂为研究对象,在以大破口失水事故为始发事件的严重事故中,针对不同的破口尺寸及破口位置对堆芯内锆-水反应及堆腔内熔融堆芯与堆腔混凝土之间的相互作用(MCCI)中氢气源项的影响进行敏感性分析.结果表明,在大破口始发的严重事故中,不同的破口尺寸对氢气源项的影响不大;而在破口尺寸相同的情况下,破口发生在主管道热段时,产氢速率的峰值最大;破口发生在主管道冷段时,累积的总产氢量最大.  相似文献   

12.
The APR1400 (Advanced Power Reactor 1,400 MWe) has adopted the direct vessel injection (DVI) in lieu of the conventional cold leg injection for its emergency core cooling system (ECCS). In this reactor, sweepout from the water surface by gas (vapor or air) flow plays an important role in analyzing the mass and momentum transfer in the reactor downcomer of multidimensional geometry during a loss-of-coolant accident (LOCA) by decreasing the water level in the downcomer. The core water level will tend to decrease rapidly if a considerable amount of the entrained water stream and droplets bypasses through the break. The amount of entrained water is mostly determined by the interacting gas flow rate, the geometric condition, and the interfacial area between the gas and the water. The sweepout is observed to take place in three rather distinct steps: the beginning of undulation, the full wave and the wave peak (droplet separation). In view of these observations we investigated the relation between the gas flow rate and the amount of bypass as a function of time. The current experimental results shed light on the flow mechanism and the semi-empirical relations for the three-dimensional sweepout in a large-diameter annulus such as the reactor downcomer. A physico-numerical model is being developed to predict the multidimensional bypass flow rate resulting from the sweepout and entrainment in the downcomer.  相似文献   

13.
建立了小破口失水事故下热工水力分析与放射性源项计算耦合模型,利用研发的反应堆源项放射性计算软件(Nuclear source radioactive compute,NSRC),分别就不同破口尺寸的堆舱放射性泄漏进行了分析和研究,进一步研究了小破口失水事故,冷端安注和热端安注对堆舱放射性影响。结果表明:破口尺寸大小、安全注射位置及破口隔离时间直接影响堆舱放射性泄漏大小。本工作的分析结果为小型船用堆在小破口设计基准事故下,放射性污染后果分析及事故处置提供了依据。  相似文献   

14.
OECD/NEA ROSA Project experiment with the large scale test facility (LSTF) in JAEA was conducted simulating a PWR 1% cold leg small break LOCA with an assumption of high-power natural circulation due to failure of scram and total failure of high pressure injection system. The core power curve for the LSTF experiment was obtained by PWR LOCA analysis using JAEA-developed coupled three-dimensional kinetics and thermal-hydraulics code SKETCH-INS/TRAC-PF1 with detailed core model. A post-test analysis was performed against the obtained data by using JAEA-modified RELAP5/MOD3.2.1.2 code to validate the code predictability. The JAEA-modified RELAP5/MOD3.2.1.2 code was used by incorporating a break model that employs maximum bounding flow theory with a discharge coefficient of 0.61 for two-phase break flow. In the experiment, flow in hot legs became supercritical during two-phase natural circulation, causing the hot leg liquid level to be quite low. Liquid accumulation in steam generator U-tube upflow-side took place during reflux condensation mode due to high vapor velocity. The RELAP5 code predicted reasonably well the overall thermal-hydraulic phenomena observed in the experiment. The code, however, overpredicted the break flow rate especially during two-phase flow discharge period probably because of the failure in the correct simulation of the cold leg liquid level due to late decrease in the primary loop flow rate.  相似文献   

15.
This study investigates experimentally and analytically the thermal hydraulic phenomena during the transition from design basis accident (DBA) to beyond-DBA, particularly, the depletion of core coolant inventory. To investigate the overall thermal hydraulic behavior after safety injection (SI) failure during a large-break loss-of-coolant accident (LBLOCA) in a cold leg, an integral loop test was performed at the Seoul National University Integral Test Facility (SNUF), which was scaled down to 1/6.4 in length and 1/178 in area from the advanced power reactor 1400 MWe (APR1400) according to the three-level scaling method. The plant condition at 200.0 s as the base case and those at 625.0 and 1950.0 s as test cases after the initiation of LBLOCA were applied as initial conditions in the experiments, respectively. The experimental results showed that the sweepout increased the coolant flow discharged to the break depending on the steam flow rate in intact cold legs and the initial downcomer coolant level and expedited the depletion of the core coolant inventory.In the meantime, since RELAP5/MOD3.3 uses the average properties of donor volume as those of its connected junction, this scheme causes the mass and the energy flux in a junction to be calculated incorrectly if significant phase separation occurs in the donor volume such as in the downcomer during the LBLOCA. The sweepout model was developed and implemented in RELAP5/MOD3.3 to improve its calculation of coolant inventory during the LBLOCA. To assess the applicability of the modified RELAP5/MOD3.3 to the actual system, the experiments in SNUF were simulated by both the original and the modified RELAP5/MOD3.3. The original one predicted the discharge flow rate at the break larger than that of the experiment. On the other hand, the modified one calculated the discharge flow rate more similar to that of the experiment than the original one did. As a result, the modified RELAP5/MOD3.3 reduced the coolant flow discharged to the break to delay the initiation time of heater heat-up after SI failure during LBLOCA in a cold leg. This improved RELAP5/MOD3.3 will support a more realistic thermal hydraulic analysis in an integrated analysis system.  相似文献   

16.
以某船用压水堆为研究对象,采用RELAP5/MOD32程序,分析了发生在主管道冷端的极限中破口失水事故中,采取冷端、热端安注方式时不同的事故过程。引入临界管概念,确定了包壳破损临界功率因子。对全堆进行精细功率重构,确定每根燃料元件功率因子,最终确定不同安注方式下的元件包壳破损份额,并指出:对破口出现在主管道冷段的设计基准事故,热端安注能减轻事故后果,减少破损份额。  相似文献   

17.
In the previous study, it is reported that the core collapsed liquid level was depressed nearly to the core bottom and the dryout of the core was observed in the early stage of the PWR cold leg small break loss-of-coolant accident (LOCA) experiment, The manometric effect due to the liquid seal formation in the loop seal and the difference of the liquid holdup between the steam generator (SG) upflow-side and downflow-side caused a depression of the core collapsed liquid level. The core liquid level was recovered just after the loop seal was cleared.

The bypass between the core side and the downcomer side affects the core liquid depression. Four 5% cold leg break experiments with the different core bypass location, configuration and size were conducted to clarify the bypass effect. When the bypass was relatively small (less than 3% bypass of the initial core flow before the break), the timing of the loop seal clearing delayed with the bypass. When the bypass was relatively large (9.2% of the core flow), the loop seal clearing took place after the break uncovery and the timing was significantly delayed. In general, the smaller minimum core collapsed liquid level was obtained at the earlier timing of loop seal clearing due to the smaller bypass.  相似文献   

18.
Upper plenum dump during reflood in a large break loss-of-coolant accident of PWR is studied with the emergency core coolant injection into the upper plenum in addition to the cold leg. Transient experiments were carried out by injecting water into the upper plenum and the simple analysis based on a one-dimensional model was done using the drift flux model in order to investigate the conditions under which water dump through the core occurs during reflood.

The most significant result is an upper plenum dump occurs when the pressure (hydrostatic head) in the upper plenum is greater than that in the lower plenum. Under those circumstances the flow regime isco-current down flow in which the upper plenum is rapidly emptied. On the other hand, when the upper plenum pressure (hydrostatic head) is less than the lower plenum pressure (hydrostatic head), the co-current down flow is not realized but a counter-current flow occurs. With subcooled water injection to the upper plenum, co-current down flow is realized even when the upper plenum hydrostatic head is less than the lower plenum hydrostatic head. The importance of this effect varies according to the magnitude of water subcooling.  相似文献   

19.
KAERI recently constructed a new thermal-hydraulic integral test facility for advanced pressurized water reactors (PWRs) – ATLAS. The ATLAS facility has the following characteristics: (a) 1/2-height&length, 1/288-volume, and full pressure simulation of APR1400, (b) maintaining a geometrical similarity with APR1400 including 2(hot legs) × 4(cold legs) reactor coolant loops, direct vessel injection (DVI) of emergency core cooling water, integrated annular downcomer, etc., (c) incorporation of specific design characteristics of OPR1000 such as cold leg injection and low-pressure safety injection pumps, (d) maximum 10% of the scaled nominal core power. The ATLAS will mainly be used to simulate various accident and transient scenarios for evolutionary PWRs, OPR1000 and APR1400: the simulation capability of broad scenarios including the reflood phase of a large-break loss-of-coolant accident (LOCA), small-break LOCA scenarios including DVI line breaks, a steam generator tube rupture, a main steam line break, a feed line break, a mid-loop operation, etc. The ATLAS is now in operation after an extensive series of commissioning tests in 2006.  相似文献   

20.
针对核电站额定运行工况下发生冷段大破口失水事故进行了分析。分析结果表明,低压安注系统在冷段注入再循环和在冷、热段同时注入再循环时能保证堆芯冷却,并防止硼酸结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号