共查询到20条相似文献,搜索用时 15 毫秒
1.
采用NTG和UV连续处理绿色木霉IFO31137菌株(TTichodermaviTideIFO31137),并对菌株纤维素酶活力和酶吸附率作双重比较,获得突变株SO-465。其微晶粉末纤维素酶(Avicelase)活力提高8.2倍,酶对废物的吸附率增加约5倍。突变菌株对四种纤维素底物(微晶粉末纤维素、滤纸、纸浆纤维和KCFloc)的水解率分别为87.5%、81.9%、90.5%和83.2%,比原始菌株增加幅度为101%、230%、83%和74%。 相似文献
2.
3.
4.
木霉纤维素酶基因的克隆与表达研究进展 总被引:6,自引:0,他引:6
对自然界中能够产生纤维素酶完全酶系的丝状真菌木霉的纤维素酶基因克隆与表达的研究进展进行了综述,主要包括基因克隆,转化载体,以及基因表达等分子生物学方面的研究。 相似文献
5.
研究了里氏木霉纤维素酶超滤过程中pH值的影响,结果显示适宜的pH为7.0。在pH 7.0的条件下,依次用PVDF100超滤膜和PS30超滤膜对纤维素酶粗酶液进行恒体积洗滤方式超滤,以洗出其中的杂蛋白,纯化之后的里氏木霉纤维素酶系中内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶分别被纯化了2.1、1.78和1.49倍,而且维持了里氏木霉纤维素酶系构成的稳定性。此时,相应酶组分的回收率分别为75.9%、81.8%和54.0%。 相似文献
6.
研究了里氏木霉LW1所产纤维素酶的主要酶学性质。结果表明,该纤维素酶的最适温度为50℃,最适pH值为4.8;在30~50℃,pH 4.0~6.0范围内有较高的稳定性;90℃处理15 min,酶粉的CMC酶活和FPA酶活保存率分别为38.66%和52.68%;Ca2+、K+、Na+、Mg2+离子对酶活有激活作用,Mn2+、Zn2+、Cu2+离子有抑制作用。 相似文献
7.
康宁木霉固态发酵秸秆生产纤维素酶的研究 总被引:8,自引:0,他引:8
采用康宁木霉(Trichodermakoningii)固体发酵生产纤维素酶,研究了秸杆粉和麦麸用量、料水比、起始pH值、温度和时间对该菌株产纤维素酶活力的影响。结果表明,康宁木霉的适宜发酵条件为:秸秆∶麦麸=3∶2,料水比1∶2,培养温度28~30℃,起始pH5.5~6.0时产酶活力最高。在适宜培养条件下,发酵周期为72h,发酵液中FPA酶活为172.3μmol/h.mL。 相似文献
8.
9.
应用里氏木霉发酵制备纤维素酶固体曲的研究 总被引:1,自引:0,他引:1
应用本实验室筛选得到的纤维素酶高产菌株里氏木霉(Trichoderma reesei)150-1-1发酵制备纤维素酶固体曲,通过优化固态发酵培养基组成及发酵条件,制备得到纤维素酶活力较高的固体曲及粗酶液。实验结果表明,在原料量为10 g,麸皮与秸杆粉质量比为4:1,料液比为1:2.5,发酵时间为120 h,发酵温度为31℃,发酵起始pH值为5.5的条件下,应用里氏木霉150-1-1发酵得到的纤维素酶固体曲酶活力达到423.6 U/g。 相似文献
10.
11.
绿色木霉PCR模板的制备方法研究 总被引:1,自引:0,他引:1
采用经典CTAB法、简化CTAB法、氯化苄法和快速提取法对绿色木霉总DNA进行制备。利用依据绿色木霉CBH2基因设计合成的一对引物,以上述方法制备的DNA为模板进行PCR反应,证明简化CTAB法是绿色木霉PCR模板DNA制备的最佳方法。 相似文献
12.
绿色木霉合成几丁质酶条件的研究 总被引:6,自引:0,他引:6
绿色木霉ZU011在以0.5%几丁质为唯一碳源的培养基中几丁质酶活达到0.124IU/mL。几丁质酶合成的最佳碳源和诱导物为几丁质。在一定范围内啬2基中几丁质浓度,葡萄糖浓度,微量元素盐浓度和碳氮比都能提高几丁质酶活。胆汁酸和吐温80作为表面活性剂能显著提高几丁质酶活。 相似文献
13.
本研究尝试通过里氏木霉RutC-30添加适量的麸皮以及利用实验设计软件Design-Expert寻找适宜的麸皮与微晶纤维素的配比来研究麸皮对里氏木霉RutC-30产纤维素酶的影响。结果表明,适当的麸皮添加量能够促进纤维素酶的生产:通过二元二次正交旋转组合设计,确定了微晶纤维素添加量和麸皮添加量分别为12.23和23.50g/L的优化产酶条件:此奈件下,在250mL摇瓶中滤纸酶活达到6.383FPIU/mL,得率系数为521.913FPIU/g;在7.5L发酵罐中,滤纸酶活为6.807FPIU/mL,得率系数为556.582FPIU/g。相比于优化前,优化后摇瓶实验和发酵罐实验中滤纸酶活分别提高了14.247%和17.403%,而纤维素酶的得率系数却分别降低了6.584%和4.005%。分别以酸解杨木残渣和蒸汽爆破杨木浆替代微晶纤维素作为碳源,最终获得最高滤纸酶活1.953FPIU/mL和1.745FPIU/mL。 相似文献
14.
麸皮对里氏木霉Rut C-30产 纤维素酶的促进作用 总被引:3,自引:0,他引:3
本研究尝试通过里氏木霉Rut C-30添加适量的麸皮以及利用实验设计软件Design-Expert寻找适宜的麸皮与微晶纤维素的配比来研究麸皮对里氏木霉Rut C-30产纤维素酶的影响.结果表明,适当的麸皮添加量能够促进纤维素酶的生产;通过二元二次正交旋转组合设计,确定了微晶纤维素添加量和麸皮添加量分别为12.23和23.50 g/L的优化产酶条件.此条件下,在250 mL摇瓶中滤纸酶活达到6.383 FPIU/mL,得率系数为521.913 FPIU/g;在.5 L发酵罐中,滤纸酶活为6.80 FPIU/mL,得率系数为556.582 FPIU/g.相比于优化前,优化后摇瓶实验和发酵罐实验中滤纸酶活分别提高了14.24%和1.403%.而纤维素酶的得率系数却分别降低了6.584%和4.005%.分别以酸解杨木残渣和蒸汽爆破杨木浆替代微晶纤维素作为碳源,最终获得最高滤纸酶活1.953 FPIU/mL和1.45 FPIU/mL. 相似文献
15.
以里氏木酶(Trichoderma reesei Rut C-30)为产酶菌株,采用不同纤维底物(麸皮,玉米皮及玉米秸杆)制备纤维素酶,研究其酶解效果及酶系构成。研究表明,玉米秸杆底物最佳,滤纸酶活达到1.87IU/mL,产酶收获期为112h,麸皮底的收获期最短,达48h但滤纸酶活最低,达0.76IU/mL,产酶时间长短将影响酶系构成,时间长酶系结构合理,滤纸酶活高。 相似文献
16.
17.
以微晶纤维素和淀粉水解液作为碳源生产纤维素酶,在里氏木霉Rut C30分批补料生产纤维素酶的过程中通过间歇取出部分酶的培养方式保护纤维素酶。实验结果显示:采用间歇出酶培养方式,在分批补料3 d后,每1、2或者3天取出部分酶液。当平均每天取出15%的酶液,酶活显著增加,总纤维素酶酶活较单纯分批补料提高26.5%~32.6%,而总β-葡萄糖苷酶酶活提高超过46%;采用间歇出酶出菌丝培养方式,当每天取出15%的酶液时,纤维素酶产量比分批补料增长35.4%,去除和酶液等量的菌丝,酶活和分批补料相比增长32.5%,而且这两种培养方式所生产的纤维素酶的酶解效率高达82%,远超商品酶Celluclast(62.03%)。 相似文献
18.
19.
20.
段峰 《纤维素科学与技术》2007,15(4):49-54
通过以玉米种皮为基质对绿色木霉J98-06的固态发酵研究,选育得到一株高产纤维素酶菌株,其最适培养条件为:玉米种皮与麦麸质量比3:7,硫酸铵1.4%,K2HPO4 0.2%(质量分数),加水量为1:1.2~1.4(质量比),发酵温度30℃,发酵时间4天,产酶活力高达3865 U/g(干曲)。 相似文献