首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The corrosion protection performance of electroless deposited nickel-phosphorus (Ni-P) alloy coatings containing tungsten (Ni-P-W) or nano-scattered alumina (Ni-P-Al2O3) composite coatings on low carbon steel was studied. The effect of heat treatment on the coating performance was also studied. The optimum conditions under which such coatings can provide good corrosion protection to the substrate were determined after two weeks of immersion in 3.5% NaCl solution. Electrochemical impedance spectroscopy (EIS) and polarization measurements have been used to evaluate the coating performance before and after heat treatment. The Ni-P-W coatings showed the highest surface resistance compared with Ni-P-Al2O3 and Ni-P. The surface resistance of Ni-P-W coatings was 12.0 × 104 Ω cm2 which is about the double of the resistance showed by Ni-P-Al2O3 (7.00 × 104 Ω cm2) and twenty times greater than the surface resistance of Ni-P (0.78 × 104 Ω cm2). XRD analysis of non-heat-treated samples revealed formation of a protective tungsten phosphide phase. Heat treatment has an adverse effect on the corrosion protection performance of tungsten and alumina composite coatings. The surface resistance decreased sharply after heat treatment.  相似文献   

2.
In this paper, an electroless nickel plating and sol-gel combined technique used to prepare the Ni-P/TiO2 composite film on sintered NdFeB permanent magnet is described and the composite film was characterized by X-ray diffraction (XRD), environmental scanning electron microscopy (ESEM), and energy dispersive X-ray spectrometer (EDX). The corrosion resistance of Ni-P/TiO2 film was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The self-corrosion current density (icorr) of Ni-P/TiO2 composite film is 2.38μA/cm2 in 0.5mol/L H2SO4 solution about 33% of that of Ni-P coating and 0.22μA/cm2 in 0.5mol/L NaCl solution about 14% of that of Ni-P coating, respectively. In 0.5mol/L H2SO4 and 0.5mol/L NaCl solutions, the polarization resistance (Rp) of the composite film is 12.5kΩ cm2 and 120kΩ cm2, about 1.6 and 2 times that of Ni-P coating, respectively. The results indicate that Ni-P/TiO2 composite film has a better corrosion resistance than Ni-P coating.  相似文献   

3.
A new processing concept has been developed to produce nano-structured metal-matrix composite coatings. This method combines sol-gel and electroless plating techniques to prepare highly dispersive oxide nano-particle reinforced composite coatings. Transparent TiO2 sol was added into the standard electroless plated Ni-P solution at a controlled rate to produce Ni-P-TiO2 nano-composite coatings on Mg alloys. The coating was found to have a crystalline structure. The nano-sized TiO2 particles (∼ 15 nm) were well dispersed into the Ni-P coating matrix during the co-deposition process. This technique can effectively avoid the agglomeration of nano-particles in the coating matrix. As a result, the microhardness of the composite coatings were significantly increased to ∼ 1025 HV200 compared to ∼ 710 HV200 of the conventional composite coatings produced with solid particle mixing methods. Correspondingly, the wear resistance of the new composite coatings was also greatly improved.  相似文献   

4.
Ni-P-CNTs化学镀层在酸性溶液中的电化学腐蚀行为   总被引:2,自引:2,他引:2  
张海军  赵国刚  周月波 《表面技术》2009,38(6):13-15,42
为了更深地认识CNTs对Ni—P镀层电化学腐蚀性能的影响,采用复合化学镀技术,通过向优化的化学镀溶液中加入碳纳米管的方法在45^#钢基材上制备了Ni—P—CNTs复合镀层,并用相同工艺在45^#钢基材上直接化学镀Ni—P镀层作为对比。采用SEM/EDAX,XRD和TEM综合分析了复合镀层的形貌和结构,分析表明:所得镀层以非晶结构为主,碳纳米管均匀分布在镀层中。采用动电位极化及交流阻抗技术对比研究了Ni—P—CNTs复合镀层及纯Ni—P镀层在0.5mol/LNaCl+0.05mol/LH2sO4酸性溶液中的电化学腐蚀行为,腐蚀实验结果表明:在该介质溶液中,与不含碳纳米管的Ni—P镀层相比,Ni—P—CNTs复合镀层的自腐蚀电位和自腐蚀电流密度较低,耐均匀腐蚀性能得到明显改善;此外,碳纳米管的加入还明显提高了Ni—P镀层在该介质溶液中的耐点蚀性能。  相似文献   

5.
In this study, Ni-P coatings and sealing of the coatings by Ce-rich solution on Cf/Al composite surface for enhanced corrosion resistance are investigated. The corrosion resistance of uncoating sample in 3.5 wt.% NaCl solution was investigated and a comparison with Ni-P and Ce-sealed Ni-P coatings is given. Effect of Ce-sealing on Ni-P coating is discussed. The results of electrochemical measurements of corrosion performance of Cf/Al composites show that sealing of Ni-P coatings with Ce-rich solution can improve the corrosion resistance. The Ce-rich-sealed Ni-P coating has higher corrosion resistance than the coating without Ce, and the electroless plated Ni-P coating on composite surface has higher corrosion resistance than the bare sample, as evidenced by EIS and potentiodynamic polarization measurements. The microstructure of the Cf/Al composites and the two kinds of coatings (i.e., Ni-P coating and Ce-sealed Ni-P coating) were examined by scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy. The Ce-sealed Ni-P coatings on Cf/Al composite surface have a total thickness of ~11 μm of which 10 μm is the thickness of the Ni-P coating and ~1 μm is the thickness of the Ce-rich sealing. It shows that the selected area electron diffraction ring pattern of Ce-rich sealing on Ni-P plated composite is consistent with Ce6O11 or CeO2. X-ray photoelectron spectroscopy results show that Ce4+ was the dominant oxidation state for Ce-rich sealing on Ni-P plated composite. The Ce-sealing treatment on Ni-P coating has improved the corrosion resistance over and above the corrosion resistance offered by the Ni-P mono-coating to the bare substrate.  相似文献   

6.
Ni-P alloy/multiwalled carbon nanotube (MWCNT) composite films were fabricated on acrylonitrile butadiene styrene (ABS) resin by electroless plating and their microstructures, adhesion strengths, and friction properties were investigated. Various types of MWCNTs were used. In addition, various electroless plating baths were prepared to form Ni-P alloy matrices with various phosphorus contents. To enhance the adhesion strength, the ABS resin substrate was subjected to roughening treatment. The microstructures of the composite films were examined by scanning electron microscopy and X-ray diffraction. Their adhesion strengths were measured by tensile tests. The friction properties of the composite films were investigated using the ball-on-plate method. Ni-P alloy/MWCNT composite films containing various types of MWCNTs and with Ni-P alloy matrices having various phosphorus contents were fabricated on the ABS resin substrates by electroless deposition. The adhesion strength between the Ni-P alloy/MWCNT composite films and the ABS resin substrate was more than 1300 N cm− 2. The Ni-P alloy/MWCNT composite films had considerably lower friction coefficients than the Ni-P alloy films. The friction coefficients of the composite films were significantly affected by the type of MWCNTs used.  相似文献   

7.
为提高SiCp/Al复合材料的耐腐蚀性能,先化学镀镍,再沉积稀土封孔,讨论了稀土溶液主盐Ce(NO3)3浓度和沉积时间对镍-稀土多层膜耐蚀性能的影响。结果表明:化学镀镍的SiCp/Al复合材料在室温下沉积稀土时,采用Ce(NO3)3含量1 g/L、成膜时间2 h的条件获得的多层膜耐蚀性最好,其腐蚀电位为-0.48mV,腐蚀电流密度为3.54×10-8A/cm2;稀土在膜层中以Ce的氧化物颗粒堆积状态存在,起到了封孔的作用;膜层中的镍磷合金呈多晶态,而稀土含量少,未能测出;稀土溶液浓度越高,沉积速度越快,而在相同浓度下,膜层厚度随着时间的延长而增加,越厚则膜层结合力越差。  相似文献   

8.
目的研究碳纳米管对Ni-P化学镀层组织与性能的影响。方法将碳纳米管(CNTs)加入到镀液中,采用化学镀的方法在45#钢表面制得碳纳米管-镍磷化学复合镀层。利用扫描电镜、X射线衍射仪综合分析复合镀层的表面形貌和结构,并采用多功能材料表面性能测试仪对复合镀层的摩擦磨损性能进行了研究。利用动电位极化技术对Ni-P-CNTs复合镀层在3.5%NaCl溶液中的电化学腐蚀行为进行了研究。结果Ni-P-CNTs化学复合镀层是非晶态结构,CNTs均匀地嵌埋在基质镀层中。在耐磨性试验中,Ni-P-CNTs复合镀层的磨损率比Ni-P镀层降低了7.6×10~(-11) m~3/(N·m),而平均摩擦因数减小了0.074。在电化学腐蚀试验中,Ni-P-CNTs复合镀层的腐蚀电位比Ni-P镀层正移了222 mV,而腐蚀电流密度降低了5.234×10~(-6) A/cm~2。结论碳纳米管填补了镍磷非晶胞间的间隙,改善了复合镀层的组织结构,使Ni-P-CNTs化学复合镀层具有更好的耐摩擦磨损性能和耐腐蚀性能。  相似文献   

9.
In the present investigation electroless Ni-P coatings were prepared. Structural characterizations indicated that the as-deposited coating had an amorphous structure with a P content of 23 at.%. The deformation behavior of an electrolessly amorphous Ni-P coating was investigated by using the Vickers indentation and the Tribo-indenter instrumented nano-indentation technique. The hardness of the Ni-P coating is remarkably improved after proper heat-treatment and the hardness is as high as 12.7 GPa for the coating annealed at 400 °C for 1 h. However, the cracks were observed during the indentation of the Ni-P coatings annealed at 400 °C and 500 °C for 1 h. The corresponding fracture toughness was evaluated as 2.58 MPa m0.5 and 1.33 MPa m0.5, respectively. Nanoscratching tests indicated that the wear resistance of the Ni-P coatings was improved significantly with an increasing ratio of hardness (H) to elastic modulus (E). It was observed that the friction coefficient increased from 0.083 ± 0.006 for the Ni-P coating annealed at 300 °C up to 1.337 ± 0.009 for the IF steel substrate, while the H/E simultaneously decreased from 0.084 (10.7/128) to 0.009 (1.85/200). The study revealed that the electrolessly amorphous Ni-P coating had offered better corrosion resistance than the Ni-P coatings after heat-treatment. An annealing temperature of 300 °C is preferentially suggested for the trade-off between the wear resistance property and anti-corrosion property of the Ni-P coating.  相似文献   

10.
In this work, CeO2/stannate multilayer coatings on AZ91D magnesium alloy were successfully obtained by chemical conversion and sol–gel dip coating. The stannate conversion coatings were prepared from a stannate aqueous bath containing Na2SnO3, CH3COONa, Na3PO4 and NaOH at different temperatures and immersion times. Ceria films were produced on stannate/AZ91D starting from Ce(III) nitrate solutions in H2O. In some cases, the PVA was added as chelating agent. Ceria top coatings were fired at 200 °C for 1 h. Coating microstructure was examined by FE-SEM. Finally, the corrosion resistance features of the coatings were tested by the electrochemical impedance spectroscopy (EIS) in 3 wt.% NaCl solution. The effect of PVA addition was evaluated in terms of microstructure and corrosion resistance features. CeO2/stannate multilayer films, 3 μm thick, uniform, well adherent and nearly crack free were obtained. The formation of CeO2 phase was confirmed by XRD and XPS analyses. The XPS depth profiles showed a limited diffusion of Mg towards the ceramic film. The EIS tests showed a significant improvement of corrosion resistance of the multilayer coatings (~ 16.6 kΩ after 48 h in NaCl solution) with respect to the blank alloy (~ 2.4 kΩ after 48 h in NaCl solution).  相似文献   

11.
A chromium-free pickling process of magnesium alloys in H3PO4 + Na2MoO4 solution for electroless Ni-P plating was described. The dosage of Na2MoO4 was established by detecting adhesion and corrosion resistance of chemical nickel coatings. Electrochemical behaviors of pickling solution of H3PO4 + Na2MoO4 and NH4HF2 activation solution were investigated with the open circuit potential curves and the polarization curves. The results show that the Na2MoO4 has strong inhibition ability. Na2MoO4 in H3PO4 solution can reduce active sites of microcathodic and microanodic zones in the corrosion cells of the substrate surface of magnesium alloys and plays an inhibition role. The activation film with some oxides and fluorides can prevent the substrate magnesium from the fierce displacement and corrosion reaction of electroless plating bath. The chemical Ni-P coating with good adhesion and corrosion resistance was obtained by the pretreatment of 200 cm3 dm−3 85% H3PO4 + 5 g dm−3 Na2MoO4 pickling bath and activation in 200 g dm−3 NH4HF2 solution. This procedure of surface pretreatment before electroless nickel plating can replace the existing acid pickling containing chromium and HF activation.  相似文献   

12.
To verify the relationship between the properties of composite coatings prepared on Q235 steel and the SiC content of electroless Ni-P-SiC composite coatings, systematic experiments with varied SiC contents and surfactants have been conducted. The experimental results indicated the approximate linear relation between the SiC content and the hardness of composite coatings. With the increasing of SiC content, wear resistance increases correspondingly. In particular, the effect of SiC content on the corrosion resistance of Ni-P-SiC composite coatings immersed in different corrosive solutions (i.e. 5% H2SO4, 20% NaOH and 3.5% NaCl) is explored, followed by a comparative analysis of the corrosion resistance between Ni-P and Ni-P-SiC coatings. Corrosion test indicates that NaOH solution makes no differences in the corrosion resistance between Ni-P coatings and electroless Ni-P-SiC composite coatings, both being uncorroded. Exposed to NaCl solution, the corrosion resistance of electroless Ni-P-SiC composite coatings decreases gradually with the increasing of SiC content in coatings. In H2SO4 solution, the corrosion resistance of coatings increases initially and decreases afterwards with the sustained increasing of SiC content in coatings, and the optimized corrosion resistance is obtained at a SiC content of 9.41 wt.%. Finally, a competent electroless Ni-P-SiC composite plating process producing a high wear resistance and sound corrosion resistance of the coatings is obtained.  相似文献   

13.
The deposition rate and buffering capability of alkaline electroless Ni-P plating solution containing ammonium fluoride (NH4F) have been investigated. When the NH4F concentration is below 10 g L− 1, the deposition rate is improved with the addition of NH4F, reaching the maximum value at 2 g L− 1. The buffering capability of solutions is found to be improved with increasing NH4F concentration. Due to the improvement of buffering capability, refined and compact Ni-P coatings with homogeneous elemental distribution of P have been achieved. Therefore, both the corrosion resistance and microhardness of Ni-P coatings are significantly improved. The mechanism of NH4F improving the deposition rate and the buffering capability is discussed.  相似文献   

14.
In the present study, the potential of poly(ether imide) as corrosion protective coating for magnesium alloys was evaluated using the spin coating technique. The influence of different parameters on the coating properties was evaluated and the corrosion behaviour of the coatings was investigated using electrochemical impedance spectroscopy. The best corrosion protection was obtained preparing the coatings under N2 atmosphere, using 15 wt.% solution in N′N′-dimethylacetamide (DMAc) which resulted in a coating of approximately 2 μm thickness, with an initial impedance of 109 Ω cm2 and of 105 Ω cm2 after 240 h of exposure to a 3.5% NaCl solution.  相似文献   

15.
A composite coating Ni-P-WC was produced using an electroless deposition technique from citrate bath containing WC powder. The influence of plating parameters such as WC content, pH, temperature and stirring rate on the content of WC codeposited with Ni-P alloys were investigated. The maximum value of WC (50-55 Vp) codeposited can be achieved at a particle content of 20 gL− 1 in the electrolyte, at pH 5.5-6, temperature 85-90 °C and stirring rate of 150 rpm. Surface morphology and microstructure of Ni-P-WC coatings were determined by means of SEM and X-ray diffraction. It was found that the phase structure of the solid solution cannot be varied by codeposition of WC particles in Ni-P alloys, and it only influences the growth of the crystal planes. The properties of the composite such as hardness and abrasion resistance were also examined and compared with WC free nickel deposited layer. The presence of WC particles in the deposit significantly was found to improve the hardness and abrasion resistance of composite coatings.  相似文献   

16.
目的利用锡酸盐转化膜中间层避免化学镀镍镀层与金属基体的直接接触,降低其产生原电池腐蚀的趋势,提高镁合金化学镀镍层的耐蚀性及稳定性。方法采用锡酸盐化学转化膜技术在AZ31镁合金表面制备锡酸盐转化膜层,然后通过直接化学镀镍技术在该膜层上沉积Ni-P镀层。利用SEM、EDS、浸泡析氢、电化学测试等手段,研究了复合镀层的显微结构、相组成、耐蚀性。结果锡酸盐转化膜由细小均匀的球形颗粒堆积而成,颗粒之间存在空隙,为直接化学镀镍时镍磷的初始沉积提供了可能。化学转化膜表面沉积的化学镀镍层均匀致密,形成典型的胞状结构。基体-化学转化膜-化学镀Ni-P合金层三者之间的结合良好,保证了复合镀层优良的耐蚀性能。结论化学镀Ni-P层能够在不经过钯活化处理的条件下直接在锡酸盐转化膜上沉积,锡酸盐转化膜中间层避免了Ni-P阴极性镀层与阳极性镁基体的直接接触,降低了Ni-P镀层局部缺陷对整体防护效果的影响,提高了镀层的耐蚀性及耐久性。  相似文献   

17.
Electroless binary Ni-P and ternary Ni-W-P alloy coatings and electroless composite (Ni-P-ZrO2 and Ni-P-W-ZrO2) nickel coatings were deposited. Baths with aminoacetic acid as the complexing agent were used. ICP measurements showed that the P content depending on the type of coating is in a range of 4.7-6.3 wt.% (at pH = 6, t = 75 °C). The tungsten content is around 1-2 wt.%. SEM examinations show that the electroless Ni-P coating has the most fine-grained structure. Grains in the form of microspheroids 20 μm in size are characteristic of the Ni-P-ZrO2 coating. X-ray diffraction patterns show that for all the obtained coatings peak Ni(111) located around 2θ = 44° is the most intensive. After the coatings are heat treated at 400 °C for 1 h the peak becomes even sharper. The heat treatment results in a nearly double increase in crystallite size. The quaternary coatings' abrasion resistance is determined by the second-phase (ZrO2) particles present in them.  相似文献   

18.
In this study, the hydroxyapatite (HA)‐titanium (Ti, 20 wt.%) multiwalled carbon nanotubes (MWCNTs, 1 wt.%) composite coating was applied on the NiTi alloy by using the electrophoretic deposition (EPD) technique. The morphologies and the phase structures of the coatings were investigated by the FESEM and XRD analysis, respectively. The corrosion behaviors of the coated NiTi samples were investigated using the polarization and electrochemical impedance spectroscopy tests in a simulated body fluid (SBF). The amounts of the released Ni ions from the coated NiTi were studied in the SBF. The results of the electrochemical tests revealed the corrosion resistance of the NiTi coated with HA was further improved by the addition of the Ti and MWCNTs to the HA coating. The current density and corrosion resistance of the NiTi alloy changed from 2.52 μA.cm?2 and 24.13 kΩ to 0.91 nA.cm?2 and 5.92 MΩ after coated with the HA‐Ti‐MWCNTs composite coating. Also, the number of nickel ions released from the surface of the NiTi alloy to the SBF medium suppressed from 11.8 to 0.08 μgr.L?1, after coating with HA‐Ti‐MWCNTs. Also, the cellular proliferation in the culture medium consisting of the NiTi alloy coated with the HA‐Ti‐MWCNTs improved significantly (compared with that of the NiTi alloy) as shown no toxicity in the cell culture medium.  相似文献   

19.
Ni-P and Ni-P-Al2O3 amorphous alloy coatings with 9.3 and 8.3 wt.% P respectively were obtained by autocatalytic deposition at 90 °C on carbon steel substrates. The effect of annealing temperature (100, 200, 300, 400 and 500 °C) upon the corrosion parameters of the coatings in artificial seawater with pH 5.0 and 8.1 at room temperature was evaluated by potentiodynamic polarisation and electrochemical impedance spectroscopy. It was found that deposits annealed at 400 and 500 °C presented an increase of the charge transfer resistance and negligible changes on samples annealed at lower temperature. Polarisation tests showed a charge transfer controlled anodic kinetics on both Ni-P and Ni-P-Al2O3 deposits and diffusion controlled cathodic reaction in artificial seawater at pH 5.0 and 8.1. The coatings did not present passive behaviour in the electrolytes and impedance measurements showed a single time constant for all cases with the lowest double layer capacitance (Cdl) for samples annealed at 400 and 500 °C. The best corrosion parameters were observed on Ni-P and Ni-P-Al2O3 coatings annealed at temperatures higher than 400 °C, which is the temperature where crystallisation of this kind of coatings takes place.  相似文献   

20.
Electrochemical techniques for the assessment of porosity in electrodeposited metal coatings are reviewed. The determination of porosity and corrosion, resistance is illustrated by electrochemical data from three coating/substrate systems namely: electroless nickel on aluminium and steel and immersed gold coatings on an electroless copper-plated ABS polymer. Nickel coatings were up to 24 μm thick while gold deposits had thickness between 75 and 190 nm. Tafel extrapolation and linear polarisation resistance methods were used to determine the corrosion rate of the coated substrates. The aluminium samples were tested in 5% w/v (0.85 mol dm− 3) NaCl, while coated steel and ABS samples were immersed in 0.125 mol dm− 3 H2SO4 and 0.1 mol dm− 3 NaBH4, respectively, at 295 K. Current vs. time curves and anodic polarisation behaviour have also been considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号