首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
利用固定化的乙酰胆碱酯酶(AChE)制作了一种可用于农药残留检测的快捷灵敏的传感器,并探讨了AChE的固定化技术。酶固定化实验确定:固定化载体为孔径0.45μm硝酸纤维素膜、保护剂牛血清白蛋白(BSA)浓度为1.0%、交联剂戊二醛浓度为5.0%时,固定化酶传感器具有较高的灵敏度和稳定性。用氨基甲酸酯类农药甲奈威为抑制剂,与GC法(GB14877-94)进行对比,当喷洒量为10.0mg.L-1时,GC法测定的结果为9.03mg.L-1,生物传感器法测定的结果为6.56mg.L-1,可以满足对甲萘威农药残留的快速检测要求。  相似文献   

3.
实验用固定化乙酰胆碱酯酶作识别元件,制备了压电生物传感器,考察了压电乙酰胆碱酯酶传感器对敌百虫的响应特性。实验结果表明,在研究的传感器频率和敌百虫浓度(质量百分比浓度)范围内,传感器的频率变化值与敌百虫的浓度成线性关系。当抑制时间为10min时,敌百虫的检出限达到2ng/mL。  相似文献   

4.
5.
以表面增强试剂OTR202和OTR103作为表面增强拉曼光谱(SERS)的活性基底,探索建立甲萘威水溶液的SERS检测方法。首先对比分析了甲萘威水溶液的普通拉曼光谱与SERS。然后分析了表面增强试剂与待测样本的加入量对甲萘威水溶液的SERS的影响。最后分析了质量浓度在0.1~15.0 mg/L范围内的甲萘威水溶液的SERS,并以1374 cm-1处的特征峰强度与甲萘威水溶液浓度进行线性回归,得到线性方程为y=414.5x+481.59,决定系数R2=0.9864。试验结果表明该研究方法对甲萘威水溶液的检测限可达到0.1 mg/L,说明以表面增强试剂OTR202和OTR103为SERS活性基底的SERS检测方法可用于水中甲萘威残留检测。  相似文献   

6.
目前,发酵工业因缺少高效在线检测手段,生产过程中不能及时跟踪底物或产物浓度变化,导致发酵效率低,污染排放严重。电化学酶生物传感器能够实现对生化反应中特定组分浓度的快速精确检测,已广泛应用于医疗行业。然而,该传感器检测范围过窄,在真实发酵体系中,需预先对样品进行稀释处理,仅能实现离线检测。为此,提出一种超宽范围的新型电化学酶生物传感器及检测方法。传感器采用三电极丝网印刷结构,工作电极为自制的规则普鲁士蓝纳米颗粒传感膜及生物酶,检测采用流动注射分析技术。测试表明,该传感器及检测系统对葡萄糖浓度的检测范围为0.5-120g/L,测量误差在2 %以内,测量周期< 60秒,完全满足发酵工业在线检测要求。  相似文献   

7.
利用磁性传感器,特别是GMR传感器,对生物特异性反应进行检测,从而解决传统荧光检测存在的标记易失、可重复性差,对设备和技术人员要求高等缺点.采用超顺磁磁珠作为磁性标记物,将其与被测生物分子充分结合后固定在芯片表面,再通过磁阻传感器的磁阻变化检测磁性标记的存在.采用高灵敏度的GMR传感器和磁性含量高的磁性颗粒,减小标记与传感器之间的距离和尺度差异,能提高阵列生物检测性能.将GMR传感器阵列应用在生物检测上是极具发展前途的研究方向,通过对已有方案的改良或选用新型的材料,最终会实现磁性生物传感器灵敏、快速、便捷的实际应用.  相似文献   

8.
检测肝癌细胞粘弹性的压电传感器研究   总被引:1,自引:1,他引:0  
基于瞬时损耗技术,研制了一种可检测细胞粘弹性的新型压电传感器。以HepG2肝癌细胞为研究对象,用该传感器研究了肝癌细胞的粘弹性以及紫杉醇对其粘弹性的影响。实验结果表明,这一新型压电传感器可对肝癌细胞的粘弹性状况进行实时、无损和持续的监测。  相似文献   

9.
生物传感器的研究和发展   总被引:1,自引:0,他引:1  
本文将较详细叙述生物传感器的研究和发展,同时简要介绍仿生传感器和生理量传感器,以对生物传感器的研究和发展有一个全貌。  相似文献   

10.
光与生物有着密切的联系,光是一种电磁波,光的传播速度是300000000米每秒。光与生物学之间的关系可以概括为:生物发光反应;光在生物物质中的能量传递,譬如生物物质的光吸收、光猝灭和受光激发等。生物反应物质对光的传播影响。随着高科技的发展,已经研制出光纤维生物传感器,光纤维生物传感器主要有光学器件检测光的灵敏度非常高,当然那用光纤维制成的生物传感器灵敏度也非常的高。另外,光信号的传播不受外界电磁波的干扰,传感器的噪声低。光纤生物传感器指用光导纤维及其检测器与生物分子识别器组装构成生物传感器。  相似文献   

11.
针对食品卫生现场检测需求,基于三磷酸腺苷(ATP)生物发光原理设计了一种新型的微生物快速检测用生物传感器,并以ATP标准品为检测对象,结合荧光分光光度计对传感器的响应波长、检测时间及响应范围等基本特性进行了初步研究。研究结果表明,该传感器对标准ATP响应迅速,其光学响应波长为550nm;在1~100nmol/L ATP浓度范围内,传感器响应光强信号与ATP浓度之间呈现出良好的正响应关系。此外,通过如加入一定CoA等方式来优化检测试剂配方,可以进一步来改进传感器的检测灵敏度。该传感器在结构上采用集成化设计,具有无需微生物培养、操作简单及响应快速的优点,在食品工业领域快速检测物体表面微生物污染方面具有广泛应用前景。  相似文献   

12.
针对食品卫生现场检测需求,基于三磷酸腺苷(ATP)生物发光原理设计了一种新型的微生物快速检测用生物传感器,并以ATP标准品为检测对象,结合荧光分光光度计对传感器的响应波长、检测时间及响应范围等基本特性进行了初步研究。研究结果表明,该传感器对标准ATP响应迅速,其光学响应波长为550nm;在1-100nmol/L ATP浓度范围内,传感器响应光强信号与ATP浓度之间呈现出良好的正响应关系。此外,通过如加入一定CoA等方式来优化检测试剂配方,可以进一步来改进传感器的检测灵敏度。该传感器在结构上采用集成化设计,具有无需微生物培养、操作简单及响应快速的优点,在食品工业领域快速检测物体表面微生物污染方面具有广泛应用前景。  相似文献   

13.
根据西维因水解物具有强荧光的特性,提出了利用三维荧光光谱技术结合偏最小二乘回归(PLSR)法测定鸭肉中西维因的残留含量。通过对样品的二维等高线光谱图分析,发现鸭肉和西维因的特征峰能明显区分开,在西维因-鸭肉体系中两者波峰分别位于300/365 nm和320/460 nm,再利用PLSR法建立鸭肉中西维因残留含量预测模型,其预测集中真实值与预测值的决定系数R2和均方根预测误差值Prms分别达到0.9883和3.103。结果表明三维荧光光谱技术结合PLSR法可用于鸭肉中西维因残留的测定,具有快速检测和预测精度高等优点,为鸭肉中农药残留检测提供了一种有效的手段。  相似文献   

14.
制备出了结构为Ta/NiFe/CoFe/Cu/CoFe/MnIr/Ta,磁阻变化达9.2%的GMR自旋阀传感器,并用该种传感器对浓度为200μg/mL、直径2μm的生物免疫磁球溶液进行了检测。实验结果表明,该生物传感器可以对被测生物免疫磁球溶液产生平均350μV的电压输出信号,随着磁球溶液的继续增加,电压输出信号可以达到最大值450μV。除去背景干扰信号的影响,由磁球产生的有效电压输出信号为300μV。此外,交流励磁场的频率的增加也会使输出电压信号减小。  相似文献   

15.
制备出了结构为Ta/NiFe/CoFe/Cu/CoFe/MnIr/Ta,磁阻变化达9.2%的GMR自旋阀传感器,并用该种传感器对浓度为200μg/mL、直径2μm的生物免疫磁球溶液进行了检测。实验结果表明,该生物传感器可以对被测生物免疫磁球溶液产生平均350μV的电压输出信号,随着磁球溶液的继续增加,电压输出信号可以达到最大值450μV。除去背景干扰信号的影响,由磁球产生的有效电压输出信号为300μV。此外,交流励磁场的频率的增加也会使输出电压信号减小。  相似文献   

16.
该文提出了一种由纳米银颗粒(Ag NPs)作为谐振器的柔性超材料生物传感器。与现有技术相比,该传感器首次在纸上实现了纳克级别甲胎蛋白(AFP)的检测。其创新之处在于超材料谐振器制备在低成本的普通纸张上。该柔性纳米银纸基生物传感器在无尘室中通过丝网印刷技术制备而成。当待测AFP吸附于Ag颗粒上时,电磁波中传感器的谐振频率产生频漂,该频漂在生物测试中作为判断标志。通过仿真和实验验证,并以葡萄球菌蛋白(SPA)作为偶联试剂,该新型纸基生物传感器具备检测20 ng/mL甲胎蛋白的能力。由于待测样品是通过电磁场直接被感应,因此,该传感器具有免标记、实时和无损的优点。该文提供了一种柔性、低成本、快速和免标记的生物检测方法,有利于生物检测学的发展。  相似文献   

17.
用于巨磁阻生物传感器检测的模拟前端电路   总被引:1,自引:0,他引:1  
陈铖颖  胡晓宇  范军  黑勇 《半导体技术》2011,(7):529-532,537
提出一种用于巨磁阻(GMR)生物传感器检测的模拟前端电路。电路采用电压检测的方法,包括基准电压源,单位增益缓冲器,电荷转移型开关电容采样保持电路,流水线模数转换器四部分;基准电压源用于产生传感器阵列的片内激励电压;传感器阵列的检测输出电压经单位增益缓冲器后,由开关电容采样保持电路进行采样,保持,放大;最后经过流水线模数转换器输出数字码流;芯片采用SMIC 0.18μm 1P6M CMOS厚栅氧工艺实现。测试结果表明,在电源电压3.3 V,20 MHz时钟下测试,整体电路输出信号有效精度达到7.2 bit,功耗33 mW,满足GMR生物传感器的检测要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号