首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports the recent results of improving the radiation hardness of silicon solar cells, which is SHARP and NASDA's project since 1998 (Tonomura et al., Second World Conference on Photovoltaic Solar Energy, 1998, pp. 3511–3514). Newly developed 2×2 cm2 Si solar cells with ultrathin substrates and both-side junction (BJ) structure showed 72.0 mW (13.3% efficiency) maximum output power at AM0, 28°C after 1 MeV electron irradiation up to 1×1015 e/cm2 and the best cell showed 72.5 mW (13.4%) maximum output power. These solar cells have p–n junctions at both front and rear surfaces and showed less radiation degradation and better remaining factor than previous solar cells.  相似文献   

2.
A mechanism of the anomalous increase of the short-circuit current of n+–p–p+ silicon space solar cells under high fluence of the high-energy 10 MeV protons or 1 Mev electrons is proposed. In distinction to other models this mechanism takes place as a result of the conversion of conductivity type and increased minority carrier lifetime with respect to that of majority carriers. This mechanism occurs in solar cells with deep centers, whose energy level is close to the middle of the band gap.  相似文献   

3.
A new silicon solar cell structure is presented in which the p–n junction is formed by alloying aluminum with n-type silicon, and where this p–n junction is located at the back (unilluminated) side of the cell. With a phosphorus front diffusion, the resultant n+np+ structure has been implemented using dendritic web silicon substrates which are 100 μm thick and doped with antimony to 20 Ω cm. Such a structure eliminates shunting of the p–n junction, provides an effective front surface field, enables a high minority carrier lifetime in the base, and is immune to light-induced degradation. Using only production-worthy, high-throughput processes, aluminum alloy back junction dendritic web cells have been fabricated with efficiencies up to 14.2% and with corresponding minority carrier (hole) lifetime in the base of 115 μs.  相似文献   

4.
This paper reports the high-energy proton irradiation effects on GaAs/Ge space solar cells. The solar cells were irradiated by protons with energy of 5–20 MeV at a fluence ranging from 1×109 to 7×1013 cm−2, and then their electric parameters were measured at AM0. It was shown that the Isc, Voc and Pmax degrade as the fluence increases, respectively, but the degradation rates of Isc, Voc and Pmax decrease as the proton energy increases, and the degradation is relative to proton irradiation-induced defect Ec−0.41 eV in irradiated GaAs/Ge cells.  相似文献   

5.
The problem of increasing efficiency, reliability and radiation resistance of solar cells based on AlGaAs/GaAs heterostructures can be solved by using an internal Bragg reflector. The Bragg reflector as a back surface reflector and as a back surface potential barrier which allows to conserve the high photosensitivity in the long- and middle-wavelength parts of the spectrum after electron and proton irradiation. The effect of base doping and base thickness on the radiation resistance of AlGaAs/GaAs solar cells with the internal Bragg reflector has been investigated. Concentrator solar cells efficiency and related parameters before and after 3 MeV electron irradiation at the fluence up to 3×1015 cm−2 are represented. A base doping level of 1×1015 cm−3 and base thickness in the range 1.1–1.6 μm give an EOL AM0 efficiency of 15.8% (BOL–22%) at 30 Suns concentration after exposure to 1×1015 cm−2 electron fluence. This EOL efficiency is among the highest reported for GaAs single-junction concentrator cells under AM0 conditions. Making the base doping level lower and the base thinner allows retaining a jEOL/jBOL ratio of 0.96 upon exposure up to 3×1015e/cm2 3 MeV electron fluence. These results are additionally supported by the modeling calculations of the relative damage coefficient.  相似文献   

6.
Two types of silicon (Si) substrates (40 n-type with uniform base doping and 40 n/n+ epitaxial wafers) from the silicon industry rejects were chosen as the starting material for low-cost concentrator solar cells. They were divided into four groups, each consisting of 20 substrates: 10 are n/n+ and 10 are n substrates, and the solar cells were prepared for different diffusion times (45, 60, 75 and 90 min). The fabricated solar cells on n/n+ substrates (prepared with a diffusion time of 75 min) showed better parameters. In order to improve their performances, particularly the fill factor, 20 new solar cells on n/n+ substrates were fabricated using the same procedure (the diffusion time was 75 min)—but with four new front contact patterns. Investigation of current–voltage (IV) characteristics under AM 1.5 showed that the parameters of these 20 new solar cells have improved in comparison to previous solar cells' parameters, and were as follows: open-circuit voltage (VOC=0.57 V); short circuit current (ISC=910 mA), and efficiency (η=9.1%). Their fill factor has increased about 33%. The IV characteristics of these solar cells were also investigated under different concentration ratios (X), and they exhibited the following parameters (under X=100 suns): VOC=0.62 V and ISC=36 A.  相似文献   

7.
Current–voltage under illumination and quantum yield characteristics of an amorphous silicon/crystalline silicon hetero solar cell have been measured before and after exposure to high-energy (1.7 MeV) protons. A comparison of the measured wavelength-dependent quantum yield with calculated values enabled to determine the effective electron diffusion length of the crystalline silicon, that dropped from a value of 434 μm before to a value of 4 μm after irradiation with 5×1012 cm−2 protons. Good agreement has been obtained between measured and simulated data using DIFFIN,1 a finite-element simulation program for a-Si:H/c-Si heterojunction solar cells, enabling us to extract the depth profile of the recombination rate and the density of states distribution in the semiconductor layers before and after irradiation.  相似文献   

8.
Effect of spatial variation of incident monochromatic light on spectral response of an n+–p–p+ silicon solar cell and determination of diffusion length of minority carriers (Lb) in the base region and the thickness of the apparent dead layer (xd) in the n+ emitter from the spectral response have been investigated. Spectral response of a few 10 cm diameter and 10×10 cm2 pseudo-square silicon solar cells was measured with the help of a standard silicon solar cell of 2×2 cm2 area in 400–1100 nm wavelength range. Different areas (4, 9, 16, 25 and total area 78.6 or 96 cm2) were exposed. The effect of the radial variation of incident radiation was determined quantitatively by defining a parameter f1 as the ratio of the average intensity falling on the reference cell to that on the exposed area of the test cell. The value of f1 varied between 1 and 1.15 (1.25) as the exposed area of the cell varied from 4 cm2 to 78.6 (96) cm2 indicating that the spatial inhomogeneity of intensity increased with the increase in the exposed cell area. Short-circuit current densities, Jsc, computed from spectral response data for AM1.5 spectrum were less compared to the directly measured values by a factor which was nearly equal to f1. However, radial variation of intensity does not affect the determination of diffusion length of minority carriers in the base region (by the long wavelength spectral response, LWSR method using the measured spectral response data in 0.85<λ<1.05 μm range) and the thickness of the dead layer (by the method of Singh et al. using the data of 0.45<λ<0.65 μm range) significantly.  相似文献   

9.
The influence of the emitter thickness on the photovoltaic properties of monocrystalline silicon solar cells with porous silicon was investigated. The measurements were carried out on n+p silicon junction whose emitter depth was varied between 0.5 and 2.2 μm. A thin porous silicon layer (PSL), less than 100 nm, was formed on the n+ emitter. The electrical properties of the samples with PS were improved with decrease of the n+p junction depth. Our results demonstrate short-circuit current values of about 35–37 mA/cm2 using n+ region with 0.5 μm depth. The observed increase of the short-circuit current for samples with PS and thin emitter could be explained not only by the reduction of the reflection loss and surface recombination but also by the additional photogenerated carriers within the PSL. This assumption was confirmed by numerical modeling. The spectral response measurements were performed at a wavelength range of 0.4–1.1 μm. The relative spectral response showed a significant increase in the quantum efficiency of shorter wavelengths of 400–500 nm as a result of the PS coating. The obtained results point out that it would be possible to prepare a solar cell with 19–20% efficiency by the proposed simple technology.  相似文献   

10.
In this study, highly stabilized hydrogenated amorphous silicon films and their solar cells were developed. The films were fabricated using the triode deposition system, where a mesh was installed between the cathode and the anode (substrate) in a plasma-enhanced chemical vapor deposition system. At a substrate temperature of 250 °C, the hydrogen concentration of the resulting film (Si–H=4.0 at%, Si–H2<1×1020 cm−3) was significantly less than that of conventionally prepared films. The films were used to develop the i-layers of solar cells that exhibited a significantly low degradation ratio of 7.96%.  相似文献   

11.
Microwave photoconductive decay (μPCD) has become a standard technique for measuring the carrier lifetime of silicon used in solar cells. Here, we have used μPCD to examine the carrier lifetimes at common doping levels used in the base region of silicon photovoltaic devices. For the conductivity range used in the p-type base of n+–p structures, the microwave penetration depth is less than the wafer thickness. In this case, the reflectance–conductivity relationship is very nonlinear. We will show that quasi-steady-state photoconductivity (QSSPC) and resonance-coupled photoconductive decay (RCPCD) lifetime measurements track over a wide range of injection level, and generally agree at higher injection levels. Our μPCD data will be compared with the transient RCPCD data over the same range. The data from the latter agree at low-injection levels, but show serious disagreement at higher injection levels. The conclusion is that μPCD must be limited to low-injection levels in the doping range used for solar cells.  相似文献   

12.
Recent papers have indicated that the excitonic population in silicon can approach that of minority carriers and make their presence felt even at room and higher temperatures in generation–recombination processes and solar energy conversion. This paper presents an investigation of temperature and doping-level dependence of silicon solar cell perfomance for doping levels from 1016 to 1018 cm−3 and temperature interval 100–500 K. Our investigation was been performed using the three-particle theory developed by R.Corkish, D.S.-P.Chan, and M.A.Green (J. Appl. Phys. 79 (1996) 195). We have found that dissociation lifetime and diffusion length of excitons are 3–6 orders of magnitude less than that of free carriers. Inclusion of excitons results in a significant increase of dark current, decrease of short-circuit current, open-circuit voltage, fill factor, and efficiency. The results obtained, taking into account the effect of excitons, are in good agreement with experimental data. We have found accurate and simplified expressions for the dark saturation current and short-circuit current. Approximate value of the upper limit of photogeneration intensity of excitons φex is found that is at least eight times less than that of free carriers φ, i.e., φexφ. An optimal doping-level range of silicon solar cell base region was found that is less than 1017 cm−3, and agrees with experimental data. The work includes a suggestion for experimental methods to confirm exciton involvement in photocurrent transport in silicon solar cells.  相似文献   

13.
Double porous silicon (d-PS) layers formed by acid chemical etching on a top surface of n+/p multi-crystalline silicon solar cells were investigated with the aim to improve the performance of standard screen-printed silicon solar cells. First a macro-porous layer is formed on mc-Si. The role of this layer is texturization of surface. Next, the cells have been manufactured using standard technology based on screen-printing metallization. Finally, a second mezo-porous layer in n+ emitter of cell has been produced. The role of this PS layer is to serve as an antireflection coating. In this way, we have obtained d-PS layers on these solar cells. The paper present observation of d-PS microstructure with SEM as well as measurements of its effective reflectance at the level of 2.5% in the 400–1000 nm length wave range. The efficiency of the solar cells with this structure is about 12%.  相似文献   

14.
A method of determination of recombination velocity Sf of minority carriers at the front surface of an n+–p–p+(p+–n–n+) silicon solar cell in which the n+(p+) front emitter is made by diffusion of dopant impurity in the p(n) region is presented. This method uses the short-wavelength spectral response of the cell to determine Sf and is applicable if the front emitter of the cell has a linearly varying built-in field. It was applied to a p+–n–n+ solar cell that had a Gaussian distribution of the dopant impurity in the p+ front emitter up to a depth of 0.078 μm from the surface. Using the spectral response data of cell in 380 nm<λ< 500 nm range Sf was found to have a nearly constant value 6×105 cm s−1 in 400 nm<λ<460 nm range. Below and above this wavelength range the value of Sf was found to be slightly smaller. For comparison the value of Sf was also determined assuming the p+ region to be uniformly doped, and this value was found to be significantly smaller than based on the diffused emitter model. The analysis showed that for a diffused junction cell, the assumption that the front emitter is uniformly doped, ignores the presence of the built-in field in the emitter region and leads to overestimation of minority carrier recombination in the emitter. Consequently for a given contribution of the front emitter region to the spectral response of the cell, this assumption underestimates the front surface recombination and determines a smaller value of Sf. On the other hand, the present method can be expected to determine a realistic value of Sf independent of λ for most diffused junction silicon solar cells using the spectral response data in a suitable short-wavelength range since each such cell indeed has a built-in electric field in the emitter region.  相似文献   

15.
The use of polycrystalline silicon layers on low-cost substrates is a promising approach for the fabrication of low-cost solar cells. Using low-carbon steel and graphite as substrates, solar cell structures have been deposited by the thermal decomposition of silane and appropriate dopants.Steel was selected as a substrate on the sole basis of its low cost. However, steel and silicon are not compatible in their properties, and an interlayer of a diffusion barrier, such as borosilicate, must be used to minimize the diffusion of iron from the substrate into the deposit. The deposited silicon on borosilicate/steel substrates is polycrystalline with a grain size of 1–5 μm, depending on deposition conditions. P-n junction solar cells were found to have low open-circuit voltages and poor current-voltage characteristics, and Schottky-barrier solar cells were found to show negligible photovoltages.Graphite is more compatible with silicon in properties than steel, and silicon deposited on graphite substrates shows considerably better microstructures. A number of solar cells, 2·5×2·5 cm in area, have been fabricated from n+-silicon/p-silicon/p+-silicon/graphite structures. The best cell to date had a Voc of 0·35 V and an AMO efficiency of 1·5% (no antireflection coating). This type of solar cell is very promising because of the simplicity in fabrication.  相似文献   

16.
Low-energy proton irradiation effects on GaAs/Ge solar cells   总被引:1,自引:0,他引:1  
This paper reports the low-energy proton irradiation effects on GaAs/Ge solar cells for space use. The proton irradiation experiments were performed with a fluence of 1.2×1013 cm−2, energies ranging from 0.1 to 3.0 MeV. The results obtained demonstrate that the irradiation with a proton energy of 0.3 MeV gives rise to the most degradation rates of Isc, Voc and Pmax of the solar cells with no coverglass, which is related to the proton irradiation-induced vacancies near the pn junction in GaAs/Ge cells. The degradation rates of Isc, Voc and Pmax of the solar cells with coverglass increase as the proton energy increases due to the cascade ions induced by collision processes. It is found that the coverglass has an obvious protection effect against the irradiation with the proton energy below 0.5 MeV.  相似文献   

17.
A comprehensive theoretical analysis taking into account the contribution from both the emitter and base regions having finite surface recombination velocity has been developed for computing short-circuit current, open-circuit voltage, and efficiency of thin AR coated thin silicon solar cells with textured front surface. The dependence of efficiency on the front surface and back surface recombination velocities and on the cell parameters have been investigated in details for varying cell thickness considering the effects of bandgap narrowing and Auger recombination in the material. It is shown that efficiency exceeding 24% can be attained with silicon solar cells having thickness as low as 25 μm provided both front and back surfaces are well passivated (S < 103cm/s) and the doping concentration in the base and emitter are in the range of 5 × 1016 to 1017cm−3 and 1018 to 5 × 1018cm−3, respectively. It is also shown that an efficiency of about 23% can be obtained for thin cells of 25 μm thickness with a much inferior quality materials having diffusion length of about 40 μm.  相似文献   

18.
The effects of low-energy proton-induced degradation of photovoltaic properties and generation of deep-level defects in n+/p InGaP solar cells have been investigated. Energy-dependent effects included decreased solar cell efficiency and increase the carrier removal rate with decreasing proton energy. The spectral response depicts that the degradation is more at longer wavelengths with the increase of proton fluence. A new majority (hole) trap HP1 has been observed in low-energy proton irradiated p-InGaP at 0.90±0.05 eV above the valence band for the first time. The carrier removal rates were found to be 61433 and 8640 cm−1 for 100 and 380-keV proton irradiation, respectively.  相似文献   

19.
Radiation resistance of high-efficiency InGaP/GaAs tandem solar cells with a world-record efficiency of 26.9% (AM0, 28°C) has been evaluated by 1 MeV electron irradiation. Degradation in tandem cell performance has been confirmed to be mainly attributed to large degradation in the GaAs bottom cell. Similar radiation resistance with GaAs-on-Ge cells has been observed for the InGaP/GaAs tandem cell. Moreover, recovery of the tandem cell performance has been found due to minority-carrier injection under light illumination or forward bias, which causes defect annealing in InGaP top cells. The optimal design of the InGaP base layer thickness for current matching at end of life (EOL) (after irradiation with 1015 electrons cm−2) has been examined.  相似文献   

20.
The effect of grain boundaries on the performance of poly-Si thin film solar cells was studied theoretically using a 2-D simulation assuming the presence of either rectangular-shaped or graded width grain boundaries in the i-layer of p/i/n structure of solar cells. The grain boundary had an adverse effect mainly on Voc. Jsc gradually increased and saturated with increasing solar cell thickness in cells without grain boundaries, whereas it reached a maximum for an i-layer thickness of 5 μm in polycrystalline silicon cells. The calculation using the graded width model showed that the efficiency of the p+/p/n+ structure was better than that of the p+/n/n+ structure. A slight p-type doping of the i-layer was found to be effective in improving cell performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号