首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interfacial reaction between liquid In-49Sn solders and Ag substrates results in the formation of a thicker Ag2In intermetallic compound accompanied with the development of a thin AgIn2 layer. Through further aging of the In-49Sn/Ag soldered specimens at various temperatures ranging from room to 100°C, solid/solid trnasitions between Ag2In and AgIn2 intermetallic compounds can be observed. When the temperature drops below 75°C, Ag2In will react with the In-49Sn solder to form the dominant AgIn2 phase. Conversely, AgIn2 is consumed at a higher temperature (e.g., 100°C) when reacting with the Ag substrate to create a now dominant Ag2In phase. Lastly, the different mechanical, electrical, magnetic, and corrosion behaviors of both intermetallic compounds are respectively made known through direct measurements of the material properties of the individual Ag2In and AgIn2 bulk samples.  相似文献   

2.
The morphology and growth kinetics of intermetallic compounds formed during the interfacial reactions between liquid Sn-20In-2.8Ag solder and Ni substrates are investigated. Energy-dispersive x-ray (EDX) analysis identifies the composition of the interfacial intermetallics as Ni3(In0.99In0.01)4. The soldering reactions at lower temperatures (225–275°C) result in the predominant formation of a homogeneous intermetallic layer whose growth is diffusion controlled. At higher soldering temperatures (300–350°C), the interfacial intermetallics appear to be long needlelike crystals, and the grooves in between the intermetallics provide fast-diffusion paths for Ni atoms to react with Sn atoms at the intermetallic front, which leads to interface-controlled growth kinetics. The intermetallic needles turned out to be flat slablike after selective etching of the unreacted solder. Kinetics analysis showed that they not only lengthened in the longitudinal direction, but also coarsened transversely by the Ostwald ripening mechanism.  相似文献   

3.
The interfacial reactions between In49Sn solders and Ag thick films at temperatures ranging from 200°C to 350°C have been studied. The intermetallic compound formed at the Ag/In49Sn interface is Ag2In enveloped in a thin layer of AgIn2. Through the measurement of the thickness decrease of Ag thick films, it has been determined that the reaction kinetics of Ag2In has a linear relation to reaction time. Morphology observations indicated that the linear reaction of Ag2In was caused by the floating of Ag2In into the In49Sn solder as a result of the In49Sn solder penetrating into the porous Ag thick film. A sound joint can be obtained when a sufficient thickness of the Ag thick film (over 19.5 μm) reacts with the In49Sn solder. In this case, the tensile tested specimens fracture in the In49Sn matrix.  相似文献   

4.
For development of a lead-free composite solder for advance electrical components, lead-free Sn3.5Ag0.5Cu solder was produced by mechanically mixing 0.5 wt.% TiO2 nanopowder with Sn3.5Ag0.5Cu solder. The morphology and growth kinetics of the intermetallic compounds that formed during the soldering reactions between Sn3.5Ag0.5Cu solder with intermixed TiO2 nanopowder and Cu substrates at various temperatures ranging from 250 to 325 °C were investigated. A scanning electron microscope (SEM) was used to quantify the interfacial microstructure at each processing condition. The thickness of interfacial intermetallic layers was quantitatively evaluated from SEM micrographs using imaging software. Experimental results show that a discontinuous layer of scallop-shaped Cu-Sn intermetallic compounds formed during the soldering. Kinetics analysis shows that the growth of such interfacial Cu-Sn intermetallic compounds is diffusion controlled with an activation energy of 67.72 kJ/mol.  相似文献   

5.
Intermetallic compounds formed during the soldering reactions between Sn-3.5Ag and Cu at temperatures ranging from 250°C to 375°C are investigated. The results indicate that scallop-shaped η-Cu6(Sn0.933 Ag0.007)5 intermetallics grow from the Sn-3.5Ag/Cu interface toward the solder matrix accompanied by Cu dissolution. Following prolonged or higher temperature reactions, ɛ-Cu3 (Sn0.996 Ag0.004) intermetallic layers appear behind the Cu6(Sn0.933 Ag0.007)5 scallops. The growth of these interfacial intermetallics is governed by a kinetic relation: ΔX=tn, where the n values for η and ɛ intermetallics are 0.75 and 0.96, respectively. The mechanisms for such nonparabolic growth of interfacial intermetallics during the liquid/solid reactions between Sn-3.5Ag solders and Cu substrates are probed.  相似文献   

6.
The intermetallic compounds formed in Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder BGA packages with Ag/Cu pads are investigated. After reflow, scallop-shaped η-Cu6Sn5 and continuous planar η-(cu0.9Ni0.1)6Sn5 intermetallics appear at the interfaces of the Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder joints, respectively. In the case of the Sn3Ag0.5Cu specimens, an additional ε-Cu3Sn intermetallic layer is formed at the interface between the η-Cu6Sn5 and Cu pads after aging at 150°C, while the same type of intermetallic formation is inhibited in the Sn3Ag0.5Cu0.06Ni0.01Ge packages. In addition, the coarsening of Ag3Sn precipitates also abates in the solder matrix of the Sn3Ag0.5Cu0.06Ni0.01Ge packages, which results in a slightly higher ball shear strength for the specimens.  相似文献   

7.
The intermetallic compounds formed during the reflow and aging of Sn-20In-2.8Ag ball-grid-array (BGA) packages are investigated. After reflow, a large number of cubic-shaped AuIn2 intermetallics accompanied by Ag2In precipitates appear in the solder matrix, while a Ni(Sn0.72Ni0.28)2 intermetallic layer is formed at the solder/pad interface. With further aging at 100°C, many voids can be observed in the solder matrix and at the solder/pad interface. The continuous distribution of voids at the interface of specimens after prolonged aging at 100°C causes their bonding strength to decrease from 5.03 N (as reflowed) to about 3.50 N. Aging at 150°C induces many column-shaped (Cu0.74Ni0.26)6(Sn0.92In0.08)5 intermetallic compounds to grow rapidly and expand from the solder/pad interface into the solder matrix. The high microhardness of these intermetallic columns causes the bonding strength of the Sn-20In-2.8Ag BGA solder joints to increase to 5.68 N after aging at 150°C for 500 h.  相似文献   

8.
The morphologies and growth kinetics of intermetallic compounds for the interfacial reaction between liquid In and solid Ni substrate in the temperature range from 225 to 500°C are examined in this study. Experimental results showed that the thickness of intermetallic compounds formed during the Ni(s)/In(1) interfacial reaction increased with the reaction temperature and the square root of reaction time. The x-ray diffraction pattern revealed the formation of intermetallic compounds Ni10In27 (T<300°C) and Ni2In3 (T>300°C). Moreover, the activation energies for the interdiffusion of Ni and In atoms in the Ni10In27 and Ni2In3 are 94.74 and 33.51 kJ/mol, respectively. Using the Ta thin film as a diffusion mark, the formation mechanism of intermetallic compounds during interfacial reaction was clarified.  相似文献   

9.
The effect of electric current on the Sn/Ag interfacial reaction was studied at 140°C and 200°C, by examining the growth of phase (ε-Ag3Sn) in the Sn/Ag reaction couples with a constant current density. Only at 140°C was the growth of phase affected by the passage of electric current. The growth rate was enhanced when diffusion of Sn and electron flow were in the same direction, and retarded when they were in the opposite direction. It was found that the diffusion coefficient of Sn through Ag3Sn was 3.37 μm2/h and the apparent effective charge for Sn in Ag3Sn was −90, at 140°C.  相似文献   

10.
During the reflow process of Sn-3.5Ag solder ball grid array (BGA) packages with Ag/Cu and Au/Ni/Cu pads, Ag and Au thin films dissolve rapidly into the liquid solder, and the Cu and Ni layers react with the Sn-3.5Ag solder to form Cu6Sn5 and Ni3Sn4 intermetallic compounds at the solder/pad interfaces, respectively. The Cu6Sn5 intermetallic compounds also appear as clusters in the solder matrix of Ag surface-finished packages accompanied by Ag3Sn dispersions. In the solder matrix of Au/Ni surface-finished specimens, Ag3Sn and AuSn4 intermetallics can be observed, and their coarsening coincides progressively with the aging process. The interfacial Cu6Sn5 and Ni3Sn4 intermetallic layers grow by a diffusion-controlled mechanism after aging at 100 and 150°C. Ball shear strengths of the reflowed Sn-3.5Ag packages with both surface finishes are similar, displaying the same degradation tendencies as a result of the aging effect.  相似文献   

11.
The morphology and growth kinetics of intermetallic compounds formed during the soldering reactions of liquid indium on Au-deposited substrates in the temperature range of 225°C and 350°C have been investigated. The results show that two types of AuIn2 intermetallic compounds make their appearance: the continuous-wavy-crystalline type, and the floating-island type. The growth of this intermetallic compound follows the parabolic law, which indicates that the growth is diffusion-controlled. The activation energy of the reaction calculated form the Arrhenius plot of growth reaction constants is 39.42 kJ/mol. Also, the wettability of liquid indium on the surface of the gold-deposited substrate is determined from contact angle measurements. Finally, a mechanism for the interpretation of the wetting behavior of the said Au/In system is proposed, which can be ascertained by SEM observations.  相似文献   

12.
The interfacial reactions between liquid In and Cu substrates at temperatures ranging from 175°C to 400°C are investigated for the applications in bonding recycled sputtering targets to their backing plates. Experimental results show that a scallop-shaped Cu16In9 intermetallic compound is found at the Cu/In interface after solder reactions at temperatures above 300°C. A double-layer structure of intermetallic compounds containing scallop-shaped Cu11In9 and continuous CuIn is observed after the Cu/In interfacial reaction at temperatures below 300°C. The growth of all these intermetallic compounds follows the parabolic law, which implies that the growth is diffusion-controlled. The activation energies for the growth of Cu16In9, Cu11In9, and CuIn intermetallic compounds calculated from the Arrhenius plot of growth reaction constants are 59.5, 16.9, and 23.5 kJ/mole, respectively.  相似文献   

13.
During the reflowing of Sn-9Zn solder ball grid array (BGA) packages with Au/Ni/Cu and Ag/Cu pads, the surface-finished Au and Ag film dissolved rapidly and reacted with the Sn-9Zn solder to form a γ3-AuZn4/γ-Au7Zn18 intermetallic double layer and ε-AgZn6 intermetallic scallops, respectively. The growth of γ3-AuZn4 is prompted by further aging at 100°C through the reaction of γ-Au7Zn18 with the Zn atoms dissolved from the Zn-rich precipitates embedded in the β-Sn matrix of Sn-9Zn solder BGA with Au/Ni/Cu pads. No intermetallic compounds can be observed at the solder/pad interface of the Sn-9Zn BGA specimens aged at 100°C. However, after aging at 150°C, a Ni4Zn21 intermetallic layer is formed at the interface between Sn-9Zn solder and Ni/Cu pads. Aging the immersion Ag packages at 100°C and 150°C caused a γ-Cu5Zn8 intermetallic layer to appear between ε-AgZn6 intermetallics and the Cu pad. The scallop-shaped ε-AgZn6 intermetallics were found to detach from the γ-Cu5Zn8 layer and float into the solder ball. Accompanied with the intermetallic reactions during the aging process of reflowed Sn-9Zn solder BGA packages with Au/Ni/Cu and Ag/Cu pads, their ball shear strengths degrade from 8.6 N and 4.8 N to about 7.2 N and 2.9 N, respectively.  相似文献   

14.
A comparative study of the kinetics of interfacial reaction between the eutectic solders (Sn-3.5Ag, Sn-57Bi, and Sn-38Pb) and electroplated Ni/Pd on Cu substrate (Cu/Ni/NiPd/Ni/Pd) was performed. The interfacial microstructure was characterized by imaging and energy dispersive x-ray analysis in scanning electron microscope (SEM). For a Pd-layer thickness of less than 75 nm, the presence or the absence of Pd-bearing intermetallic was found to be dependent on the reaction temperature. In the case of Sn-3.5Ag solder, we did not observe any Pd-bearing intermetallic after reaction even at 230°C. In the case of Sn-57Bi solder the PdSn4 intermetallic was observed after reaction at 150°C and 180°C, while in the case of Sn-38Pb solder the PdSn4 intermetallic was observed after reaction only at 200°C. The PdSn4 grains were always dispersed in the bulk solder within about 10 μm from the solder/substrate interface. At higher reaction temperatures, there was no Pd-bearing intermetallic due to increased solubility in the liquid solder. The presence or absence of Pd-bearing intermetallic was correlated with the diffusion path in the calculated Pd-Sn-X (X=Ag, Bi, Pb) isothermal sections. In the presence of unconsumed Ni, only Ni3Sn4 intermetallic was observed at the solder-substrate interface by SEM. The presence of Ni3Sn4 intermetallic was consistent with the expected diffusion path based on the calculated Ni-Sn-X (X=Ag, Bi, Pb) isothermal sections. Selective etching of solders revealed that Ni3Sn4 had a faceted scallop morphology. Both the radial growth and the thickening kinetics of Ni3Sn4 intermetallic were studied. In the thickness regime of 0.14 μm to 1.2 μm, the growth kinetics always yielded a time exponent n >3 for liquid-state reaction. The temporal law for coarsening also yielded time exponent m >3. The apparent activation energies for thickening were: 16936J/mol for the Sn-3.5Ag solder, 17804 J/mol for the Sn-57Bi solder, and 25749 J/mol for the Sn-38Pb solder during liquid-state reaction. The corresponding activation energies for coarsening were very similar. However, an apparent activation energy of 37599 J/mol was obtained for the growth of Ni3Sn4 intermetallic layer during solid-state aging of the Sn-57Bi/substrate diffusion couples. The kinetic parameters associated with thickening and radial growth were discussed in terms of current theories.  相似文献   

15.
The growth behavior of the intermetallic compounds that formed at the interfaces between Sn-Ag-Bi-In solders and Cu substrates during solid-state aging is investigated. The compositions of the intermetallic compounds are Cu3(Sn,In) near the Cu substrates and Cu6(Sn,In)5 near the solders; very little Bi or Ag was dissolved in the compounds. The aging temperatures were 120°C, 150°C, and 180°C for 5 days, 10 days, 20 days, and 40 days. The change in the morphology of Cu6(Sn,In)5 from scallop type to layer type was prominent at the aging temperature of 180°C. The thickness of the compound layers did not vary much at the lower aging temperatures but followed the diffusion- controlled mechanism at 180°C. Massive Kirkendall voids were observed in Cu3(Sn,In) layers at the aging temperature of 180°C.  相似文献   

16.
The intermetallic compounds (IMCs) formed during the reflow and aging of Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder BGA packages with Au/Ni surface finishes were investigated. After reflow, the thickness of (Cu, Ni, Au)6Sn5 interfacial IMCs in Sn3Ag0.5Cu0.06Ni0.01Ge was similar to that in the Sn3Ag0.5Cu specimen. The interiors of the solder balls in both packages contained Ag3Sn precipitates and brick-shaped AuSn4 IMCs. After aging at 150°C, the growth thickness of the interfacial (Ni, Cu, Au)3Sn4 intermetallic layers and the consumption of the Ni surface-finished layer on Cu the pads in Sn3Ag0.5Cu0.06Ni0.01Ge solder joints were both slightly less than those in Sn3Ag0.5Cu. In addition, a coarsening phenomenon for AuSn4 IMCs could be observed in the solder matrix of Sn3Ag0.5Cu, yet this phenomenon did not occur in the case of Sn3Ag0.5Cu0.06Ni0.01Ge. Ball shear tests revealed that the reflowed Sn3Ag0.5Cu0.06Ni0.01Ge packages possessed bonding strengths similar to those of the Sn3Ag0.5Cu. However, aging treatment caused the ball shear strength in the Sn3Ag0.5Cu packages to degrade more than that in the Sn3Ag0.5Cu0.06Ni0.01Ge packages.  相似文献   

17.
The morphology and growth kinetics of intermetallic compounds (IMCs) formed at the interfaces between liquid Sn-8Zn-3Bi solders and nickel substrates in the temperature range from 225°C to 400°C are investigated for the applications in bonding recycled sputtering targets to their backing plates. The results show that a continuous single layer of Ni5Zn21 IMC appears at temperatures below 325°C, while a double layer containing Ni5Zn21 and Ni35Zn22Sn43 IMCs is formed at temperatures above 325°C. In both cases, the growth kinetics of IMCs is interface-controlled. During the growth of IMCs, their reaction fronts migrate in the direction of the solder much more rapidly than toward the nickel substrate, and erosion of the Ni substrate is quite slight.  相似文献   

18.
Intermetallic-layer formation and growth in Pb-free solder joints, during solder reflow or subsequent aging, has a significant effect on the thermal and mechanical behavior of solder joints. In this study, the influence of initial intermetallic morphology on growth rate, and kinetics were examined in a Sn-3.5Ag solder reflowed on Cu. The initial morphology of the intermetallic was tailered by cooling in water, air, or furnace conditions. Solder aging was conducted at 100°C, 140°C, and 175°C and aged for 0–1,000 h. Cooling rate, aging temperature, and aging time played an important role on microstructure evolution and growth kinetics of Cu6Sn5 (η) and Cu3Sn (ɛ) intermetallic layers. Prior to aging, faster cooling rates resulted in a relatively planar Cu6Sn5 layer, while a nodular Cu6Sn5 morphology was present for slower cooling. Intermetallic-growth rate measurements after aging at various times, indicated a mixed growth mechanism of grain-boundary and bulk diffusion. These mechanisms are discussed in terms of the initial intermetallic thickness and morphology controlled by cooling rate, diffusion kinetics, and the competition between Cu6Sn5 and Cu3Sn growth.  相似文献   

19.
During the reflow process of Sn-8Zn-20In solder joints in the ball grid array (BGA) packages with Au/Ni/Cu and Ag/Cu pads, the Au and Ag thin films react with liquid solder to form γ3-AuZn4/γ-Au7Zn18 and ε-AgZn6 intermetallics, respectively. The γ3/γ intermetallic layer is prone to floating away from the solder/Ni interface, and the appearance of any interfacial intermetallics cannot be observed in the Au/Ni surface finished Sn-8Zn-20In packages during further aging treatments at 75°C and 115°C. In contrast, ε-CuZn5/γ-Cu5Zn8 intermetallics are formed at the aged Sn-8Zn-20In/Cu interface of the immersion Ag BGA packages. Bonding strengths of 3.8N and 4.0N are found in the reflowed Sn-8Zn-20In solder joints with Au/Ni/Cu and Ag/Cu pads, respectively. Aging at 75°C and 115°C gives slight increases of ball shear strength for both cases.  相似文献   

20.
In this study, the approach of composite solder using eutectic Sn-3.5Ag solder and Co was tried. Co particles and Sn-3.5Ag solder paste were mechanically mixed at Co weight fractions from 0.1% to 2.0%. For the Co-mixed Sn-3.5Ag solder pastes, their melting temperatures and spreading areas were measured. The solder pastes were stencil printed on test substrates and reflowed to form solder bumps. Ball shear test was performed to examine shear strength of Co-reinforced Sn-3.5Ag solder bumps. As a result, Co addition up to 2 wt.% did not alter the melting temperature under heating but reduced undercooling. The maximum shear strength of Co-reinforced Sn-3.5Ag solder bumps increased by 28% compared to normal ones. The increase in shear strength can be attributed to the (Cu,Co)3Sn2 intermetallic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号