首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the increasing demand for wind energy, it is important to be able to understand and predict the available wind resources. To that end, the present wind tunnel study addresses the flow in the induction and entrance region of wind farms through particle image velocimetry, with focus on differences between actuator disks and two-bladed rotating wind turbine models. Both staggered and aligned farm layouts are examined for three different incoming wind directions. For each layout, 69 disks or turbines are used, and the field of view ranges from 12 rotor diameters upstream of the farms to 8 diameters downstream of the first row. The results show that the induction, or blockage effect, is higher for the disks, even though the thrust (or drag) coefficient is the same. In contrast, the wake is stronger downstream of the turbines. The orientation and layout of the farm do not have a major impact on the results. Modal decomposition of the flow shows that the flow structure similarity between the disk and turbines improves downstream of the second row of wake generating objects, indicating that the substitution of wind turbines by actuator disks is more appropriate for wind farms than for the investigation of single wakes.  相似文献   

2.
Wind resource assessments are used to estimate a wind farm's power production during the planning process. It is important that these estimates are accurate, as they can impact financing agreements, transmission planning, and environmental targets. Here, we analyze the challenges in wind power estimation for onshore farms. Turbine wake effects are a strong determinant of farm power production. With given input wind conditions, wake losses typically cause downstream turbines to produce significantly less power than upstream turbines. These losses have been modeled extensively and are well understood under certain conditions. Most notably, validation of different model types has favored offshore farms. Models that capture the dynamics of offshore wind conditions do not necessarily perform equally as well for onshore wind farms. We analyze the capabilities of several different methods for estimating wind farm power production in 2 onshore farms with non‐uniform layouts. We compare the Jensen model to a number of statistical models, to meteorological downscaling techniques, and to using no model at all. We show that the complexities of some onshore farms result in wind conditions that are not accurately modeled by the Jensen wake decay techniques and that statistical methods have some strong advantages in practice.  相似文献   

3.
In order to study the effect of vertical staggering in large wind farms, large eddy simulations (LES) of large wind farms with a regular turbine layout aligned with the given wind direction were conducted. In the simulations, we varied the hub heights of consecutive downstream rows to create vertically staggered wind farms. We analysed the effect of streamwise and spanwise turbine spacing, the wind farm layout, the turbine rotor diameter, and hub height difference between consecutive downstream turbine rows on the average power output. We find that vertical staggering significantly increases the power production in the entrance region of large wind farms and is more effective when the streamwise turbine spacing and turbine diameter are smaller. Surprisingly, vertical staggering does not significantly improve the power production in the fully developed regime of the wind farm. The reason is that the downward vertical kinetic energy flux, which brings high velocity fluid from above the wind farm towards the hub height plane, does not increase due to vertical staggering. Thus, the shorter wind turbines are effectively sheltered from the atmospheric flow above the wind farm that supplies the energy, which limits the benefit of vertical staggering. In some cases, a vertically staggered wind farm even produced less power than the corresponding non vertically staggered reference wind farm. In such cases, the production of shorter turbines is significantly negatively impacted while the production of the taller turbine is only increased marginally.  相似文献   

4.
Aerodynamic wake interaction between commercial scale wind turbines can be a significant source of power losses and increased fatigue loads across a wind farm. Significant research has been dedicated to the study of wind turbine wakes and wake model development. This paper profiles influential wake regions for an onshore wind farm using 6 months of recorded SCADA (supervisory control and data acquisition) data. An average wind velocity deficit of over 30% was observed corresponding to power coefficient losses of 0.2 in the wake region. Wind speed fluctuations are also quantified for an array of turbines, inferring an increase in turbulence within the wake region. A study of yaw data within the array showed turbine nacelle misalignment under a range of downstream wake angles, indicating a characteristic of wind turbine behaviour not generally considered in wake studies. The turbines yaw independently in order to capture the increased wind speeds present due to the lateral influx of turbulent wind, contrary to many experimental and simulation methods found in the literature. Improvements are suggested for wind farm control strategies that may improve farm‐wide power output. Additionally, possible causes for wind farm wake model overestimation of wake losses are proposed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Individual wind turbines in a wind farm typically operate to maximize their performance with no consideration of the impact of wake effects on downstream turbines. There is potential to increase power and reduce structural loads within a wind farm by properly coordinating the turbines. To effectively design and analyze coordinated wind turbine controllers requires control‐oriented turbine wake models of sufficient accuracy. This paper focuses on constructing such a model from experiments. The experiments were conducted to better understand the wake interaction and impact on voltage production in a three‐turbine array. The upstream turbine operating condition was modulated in time, and the dynamic impact on the downstream turbine was recorded through the voltage output time signal. The flow dynamics observed in the experiments were used to improve a static wake model often used in the literature for wind farm control. These experiments were performed in the atmospheric boundary layer wind tunnel at the Saint Anthony Falls Laboratory at the University of Minnesota using particle image velocimetry for flow field analysis and turbine voltage modulation to capture the physical evolution in addition to the dynamics of turbine wake interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, we conduct a series of large‐eddy simulations (LESs) to study the impact of different incoming turbulent boundary layer flows over large wind farms, with a particular focus on the overall efficiency of electricity production and the evolution of the turbine wake structure. Five representative turbine placements in the large wind farm are considered, including an aligned layout and four staggered layouts with lateral or vertical offset arrangements. Four incoming flow conditions are used and arranged from the LESs of the ABL flow over homogeneous flat surfaces with four different aerodynamic roughness lengths (i.e., z0 = 0.5, 0.1, 0.01, and 0.0001 m), where the hub‐height turbulence intensity levels are about 11.1%, 8.9%, 6.8%, and 4.9%, respectively. The simulation results indicate that an enhancement in the inflow turbulence level can effectively increase the power generation efficiency in the large wind farms, with about 23.3% increment on the overall farm power production and up to about 32.0% increment on the downstream turbine power production. Under the same inflow condition, the change of the turbine‐array layouts can increase power outputs within the first 10 turbine rows, which has a maximum increment of about 26.5% under the inflow condition with low turbulence. By comparison, the increase of the inflow turbulence intensity facilitates faster wake recovery that raises the power generation efficiency of large wind farms than the adjustment of the turbine placing layouts.  相似文献   

7.
It is well accepted that the wakes created by upstream turbines significantly impact on the power production and fatigue loading of downstream turbines and that this phenomenon affects wind farm performance. Improving the understanding of wake effects and overall efficiency is critical for the optimisation of layout and operation of increasingly large wind farms. In the present work, the NREL 5‐MW reference turbine was simulated using blade element embedded Reynolds‐averaged Navier‐Stokes computations in sheared onset flow at three spatial configurations of two turbines at and above rated flow speed to evaluate the effects of wakes on turbine performance and subsequent wake development. Wake recovery downstream of the rearward turbine was enhanced due to the increased turbulence intensity in the wake, although in cases where the downstream turbine was laterally offset from the upstream turbine this resulted in relatively slower recovery. Three widely used wake superposition models were evaluated and compared with the simulated flow‐field data. It was found that when the freestream hub‐height flow speed was at the rated flow speed, the best performing wake superposition model varied depending according to the turbine array layout. However, above rated flow speed where the wake recovery distance is reduced, it was found that linear superposition of single turbine velocity deficits was the best performing model for all three spatial layouts studied.  相似文献   

8.
When a wind turbine works in yaw, the wake intensity and the power production of the turbine become slightly smaller and a deflection of the wake is induced. Therefore, a good understanding of this effect would allow an active control of the yaw angle of upstream turbines to steer the wake away from downstream machines, reducing its effect on them. In wind farms where interaction between turbines is significant, it is of interest to maximize the power output from the wind farm as a whole and to reduce fatigue loads on downstream turbines due to the increase of turbulence intensity in wakes. A large eddy simulation model with particular wind boundary conditions has been used recently to simulate and characterize the turbulence generated by the presence of a wind turbine and its evolution downstream the machine. The simplified turbine is placed within an environment in which relevant flow properties like wind speed profile, turbulence intensity and the anisotropy of turbulence are found to be similar to the ones of the neutral atmosphere. In this work, the model is used to characterize the wake deflection for a range of yaw angles and thrust coefficients of the turbine. The results are compared with experimental data obtained by other authors with a particle image velocimetry technique from wind tunnel experiments. Also, a comparison with simple analytical correlations is carried out. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In the present work, the wake development behind small‐scale wind turbines is studied when introducing local topography variations consisting of a series of sinusoidal hills. Additionally, wind‐tunnel tests with homogeneous and sheared turbulent inflows were performed to understand how shear and ambient turbulence influence the results. The scale of the wind‐turbine models was about 1000 times smaller than full‐size turbines, suggesting that the present results should only be qualitatively extrapolated to real‐field scenarios. Wind‐tunnel measurements were made by means of stereoscopic particle image velocimetry to characterize the flow velocity in planes perpendicular to the flow direction. Over flat terrain, the wind‐turbine wake was seen to slowly approach the ground while it propagated downstream. When introducing hilly terrain, the downward wake deflection was enhanced in response to flow variations induced by the hills, and the turbulent kinetic energy content in the wake increased because of the speed‐up seen over the hills. The combined wake observed behind 2 streamwise aligned turbines was more diffused and when introducing hills, it was more prone to deflect towards the ground compared to the wake behind an isolated turbine. Since wake interactions are common at sites with multiple turbines, this suggested that it is important to consider the local hill‐induced velocity variations when onshore wind farms are analysed. Differences in the flow fields were seen when introducing either homogeneous or sheared turbulent inflow conditions, emphasizing the importance of accounting for the prevailing turbulence conditions at a given wind‐farm site to accurately capture the downstream wake development.  相似文献   

10.
The optimization of wind farms with respect to spatial layout is addressed experimentally. Wake effects within wind turbine farms are well known to be deleterious in terms of power generation and structural loading, which is corroborated in this study. Computational models are the predominant tools in the prediction of turbine‐induced flow fields. However, for wind farms comprising hundreds of turbines, reliability of the obtained numerical data becomes a growing concern with potentially costly consequences. This study pursues a systematic complementary theoretical, experimental and numerical study of variations in generated power with turbine layout of an 80 turbine large wind farm. Wake effects within offshore wind turbine arrays are emulated using porous discs mounted on a flat plate in a wind tunnel. The adopted approach to reproduce experimentally individual turbine wake characteristics is presented, and drag measurements are argued to correctly capture the variation in power generation with turbine layout. Experimental data are juxtaposed with power predictions using ANSYS WindModeller simulation suite. Although comparison with available wind farm power output data has been limited, it is demonstrated nonetheless that this approach has potential for the validation of numerical models of power loss due to wake effects or even to make a direct physical prediction. The approach has even indicated useful data for the improvement of the physics within numerical models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Numerous studies have shown that wind turbine wakes within a large wind farm bring about changes to both the dynamics and thermodynamics of the atmospheric boundary layers (ABL). Previously, we investigated the relative humidity budget within a wind farm via field measurements in the near‐wake region and large eddy simulations (LES). The effect of the compounding wakes within a large wind farm on the relative humidity was also investigated by LES. In this study, we investigate how the areas of relative humidity variation, that was observed in the near‐wake, develop downstream in the shadow region of a large wind farm. To this end, LES of a wind farm consisting of 8x6 wind turbines with periodic boundary condition in the lateral direction (inferring an infinitely wide farm) interacting with a stable ABL is carried out. Two wind farm layouts, aligned and staggered, are considered in the analysis and the results from both configurations are compared to each other. It is observed that a decrease of relative humidity underneath the hub height and an increase above the hub height build up within the wind farm, and are maintained in the downstream of the farm for long distances. The staggered farm layout is more effective in keeping a more elongated region of low relative humidity underneath the hub, when compared to the aligned layout.  相似文献   

12.
This paper proposes a method for real‐time estimation of the possible power of an offshore wind power plant when it is down‐regulated. The main purpose of the method is to provide an industrially applicable estimate of the possible (or reserve) power. The method also yields a real‐time power curve, which can be used for operation monitoring and wind farm control. Currently, there is no verified approach regarding estimation of possible power at wind farm scale. The key challenge in possible power estimation at wind farm level is to correct the reduction in wake losses, which occurs due to the down‐regulation. Therefore, firstly, the 1‐second wind speeds at the upstream turbines are estimated, since they are not affected by the reduced wake. Then they are introduced into the wake model, adjusted for the same time resolution, to correct the wake losses. To mitigate the uncertainties due to dynamic changes within the large offshore wind farms, the algorithm is updated at every turbine downstream, considering the local axial and lateral turbulence effects. The PossPOW algorithm uses only 1‐Hz turbine data as inputs and provides possible power output. The algorithm is trained and validated in Thanet and Horns Rev‐I offshore wind farms under nominal operation, where the turbines are following the optimum power curve. The results indicate that the PossPOW algorithm performs well; in the Horns Rev‐I wind farm, the strict power system requirements are met more than 70% of the time over the 24‐hour data set on which the algorithm was evaluated.  相似文献   

13.
Most wind turbines within wind farms are set up to face a pre-determined wind direction. However, wind directions are intermittent in nature, leading to less electricity production capacity. This paper proposes an algorithm to solve the wind farm layout optimization problem considering multi-angular (MA) wind direction with the aim of maximizing the total power generated on wind farms and minimizing the cost of installation. A two-stage genetic algorithm (GA) equipped with complementary sampling and uniform crossover is used to evolve a MA layout that will yield optimal output regardless of the wind direction. In the first stage, the optimal wind turbine layouts for 8 different major wind directions were determined while the second stage allows each of the previously determined layouts to compete and inter-breed so as to evolve an optimal MA wind farm layout. The proposed MA wind farm layout is thereafter compared to other layouts whose turbines have focused site specific wind turbine orientation. The results reveal that the proposed wind farm layout improves wind power production capacity with minimum cost of installation compared to the layouts with site specific wind turbine layouts. This paper will find application at the planning stage of wind farm.  相似文献   

14.
Turbulence characteristics of the wind farm inflow have a significant impact on the energy production and the lifetime of a wind farm. The common approach is to use the meteorological mast measurements to estimate the turbulence intensity (TI) but they are not always available and the turbulence varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data.The method is applied to Lillgrund and Horns Rev-I offshore wind farms and the results are compared with TI derived from the meteorological mast, nacelle mounted anemometer on the turbines and estimation based on the standard deviation of power. The results show that the proposed TI estimation method is in the best agreement with the meteorological mast. Therefore, the rotor effective wind speed is shown to be applicable for the TI assessment in real-time wind farm calculations under different operational conditions. Furthermore, the TI in the wake is seen to follow the same trend with the estimated wake deficit which enables to quantify the turbulence in terms of the wake loss locally inside the wind farm.  相似文献   

15.
为优化风场布置,减小上游风力机尾迹影响,以实现风场全局优化,基于致动线方法,利用OpenFOAM(多物理场运行与操作开源软件)对风力机组风场进行了15种风轮俯仰工况及9种错排布置的数值模拟,比较各优化策略下的风场总输出功率,并结合流场细微结构参数分布,分析不同优化方法对风场全局影响的流动机理。结果表明:尾迹对风场下游风力机影响严重。两种数值模拟优化方法均可实现风场全局优化,其中风轮俯仰优化策略可使风场总输出功率最大提高34.5%;风力机组错排布置可提高68.5%。此外,风场上游风力机功率在风轮俯仰时下降明显,风力机组错排时几乎无变化。  相似文献   

16.
以某典型风电场为例,采用尾流模型模拟研究风电机组启停优化对风电机组尾流干涉和发电量的影响。在速度恢复系数小于0.06时,典型机位的停机可增加风电场全场发电量。以中国北方某实际风电场为例进行现场试验,在主风向下,通过调度上游风电机组的启停,实现区域内风电机组发电量提升,验证方法的有效性。  相似文献   

17.
This paper investigates wake effects on load and power production by using the dynamic wake meander (DWM) model implemented in the aeroelastic code HAWC2. The instationary wind farm flow characteristics are modeled by treating the wind turbine wakes as passive tracers transported downstream using a meandering process driven by the low frequent cross‐wind turbulence components. The model complex is validated by comparing simulated and measured loads for the Dutch Egmond aan Zee wind farm consisting of 36 Vestas V90 turbine located outside the coast of the Netherlands. Loads and production are compared for two distinct wind directions—a free wind situation from the dominating southwest and a full wake situation from northwest, where the observed turbine is operating in wake from five turbines in a row with 7D spacing. The measurements have a very high quality, allowing for detailed comparison of both fatigue and min–mean–max loads for blade root flap, tower yaw and tower bottom bending moments, respectively. Since the observed turbine is located deep inside a row of turbines, a new method on how to handle multiple wakes interaction is proposed. The agreement between measurements and simulations is excellent regarding power production in both free and wake sector, and a very good agreement is seen for the load comparisons too. This enables the conclusion that wake meandering, caused by large scale ambient turbulence, is indeed an important contribution to wake loading in wind farms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
S. Emeis 《风能》2010,13(5):459-469
The analytical top‐down wind park model by Emeis and Frandsen 1 is enhanced by consistently making both the downward momentum flux and the momentum loss at the rough surface dependent on atmospheric stability. Specifying the surface roughness underneath the turbines in a wind farm in the model gives the opportunity to investigate principal differences between onshore and offshore wind parks, because the roughness length of the sea surface is two to three orders of magnitude lower than the roughness length of land surfaces. Implications for the necessary distance between single turbines in offshore wind farms and the distance between neighbouring wind parks are computed. It turns out from the model simulations that over smooth surfaces offshore the wind speed reduction at hub height in a wind farm is larger than over rough onshore surfaces given the same density of turbines within the park. Mean wind profiles within the park are also calculated from this model. Offshore wind farms must have a larger distance between each other in order to avoid shadowing effects of the upstream farm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Wind turbine spacing is an important design parameter for wind farms. Placing turbines too close together reduces their power extraction because of wake effects and increases maintenance costs because of unsteady loading. Conversely, placing them further apart increases land and cabling costs, as well as electrical resistance losses. The asymptotic limit of very large wind farms in which the flow conditions can be considered ‘fully developed’ provides a useful framework for studying general trends in optimal layouts as a function of dimensionless cost parameters. Earlier analytical work by Meyers and Meneveau (Wind Energy 15, 305–317 (2012)) revealed that in the limit of very large wind farms, the optimal turbine spacing accounting for the turbine and land costs is significantly larger than the value found in typical existing wind farms. Here, we generalize the analysis to include effects of cable and maintenance costs upon optimal wind turbine spacing in very large wind farms under various economic criteria. For marginally profitable wind farms, minimum cost and maximum profit turbine spacings coincide. Assuming linear‐based and area‐based costs that are representative of either offshore or onshore sites we obtain for very large wind farms spacings that tend to be appreciably greater than occurring in actual farms confirming earlier results but now including cabling costs. However, we show later that if wind farms are highly profitable then optimization of the profit per unit area leads to tighter optimal spacings than would be implied by cost minimization. In addition, we investigate the influence of the type of wind farm layout. © 2016 The Authors Wind Energy Published by John Wiley & Sons Ltd  相似文献   

20.
Recently wind energy has become one of the most important alternative energy sources and is growing at a rapid rate because of its renewability and abundancy. For the clustered wind turbines in a wind farm, significant wind power losses have been observed due to wake interactions of the air flow induced by the upstream turbines to the downstream turbines. One approach to reduce power losses caused by the wake interactions is through the optimization of wind farm layout, which determine the wind turbine positions and control strategy, which determine the wind turbine operations. In this paper, a new approach named simultaneous layout plus control optimization is developed. The effectiveness is studied by comparison to two other approaches (layout optimization and control optimization). The results of different optimizations, using both grid based and unrestricted coordinate wind farm design methods, are compared for both ideal and realistic wind conditions. Even though the simultaneous layout plus control optimization is theoretically superior to the others, it is prone to the local minima. Through the parametric study of crossover and mutation probabilities of the optimization algorithm, the results of the approach are generally satisfactory. For both simple and realistic wind conditions, the wind farm with the optimized control strategy yield 1–3 kW more power per turbine than that with the self-optimum control strategy, and the unrestricted coordinate method yield 1–2 kW more power per turbine than the grid based method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号