首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintenance of long‐term cultures of yeast cells is central to a broad range of investigations, from metabolic studies to laboratory evolution assays. However, repeated dilutions of batch cultures lead to variations in medium composition, with implications for cell physiology. In Saccharomyces cerevisiae, powerful miniaturized chemostat setups, or ministat arrays, have been shown to allow for constant dilution of multiple independent cultures. Here we set out to adapt these arrays for continuous culture of a morphologically and physiologically distinct yeast, the fission yeast Schizosaccharomyces pombe, with the goal of maintaining constant population density over time. First, we demonstrated that the original ministats are incompatible with growing fission yeast for more than a few generations, prompting us to modify different aspects of the system design. Next, we identified critical parameters for sustaining unbiased vegetative growth in these conditions. This requires deletion of the gsf2 flocculin‐encoding gene, along with addition of galactose to the medium and lowering of the culture temperature. Importantly, we improved the flexibility of the ministats by developing a piezo‐pump module for the independent regulation of the dilution rate of each culture. This made it possible to easily grow strains that have different generation times in the same assay. Our system therefore allows for maintaining multiple fission yeast cultures in exponential growth, adapting the dilution of each culture over time to keep constant population density for hundreds of generations. These multiplex culture systems open the door to a new range of long‐term experiments using this model organism. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.  相似文献   

2.
Double‐strand DNA breaks are a serious threat to cellular viability and yeast systems have proved invaluable in helping to understand how these potentially toxic lesions are sensed and repaired. An important method to study the processing of DNA breaks in the budding yeast Saccharomyces cerevisiae is to introduce a unique double‐strand break into the genome by regulating the expression of the site‐specific HO endonuclease with a galactose inducible promoter. Variations of the HO site‐specific DSB assay have been adapted to many organisms, but the methodology has seen only limited use in the fission yeast Schizosaccharomyces pombe because of the lack of a promoter capable of inducing endonuclease expression on a relatively short time scale (~1 h). We have overcome this limitation by developing a new assay in which expression of the homing endonuclease I‐PpoI is tightly regulated with a tetracycline‐inducible promoter. We show that induction of the I‐PpoI endonuclease produces rapid cutting of a defined cleavage site (> 80% after 1 h), efficient cell cycle arrest and significant accumulation of the checkpoint protein Crb2 at break‐adjacent regions in a manner that is analogous to published findings with DSBs produced by an acute exposure to ionizing irradiation. This assay provides an important new tool for the fission yeast community and, because many aspects of mammalian chromatin organization have been well‐conserved in Sz. pombe but not in S. cerevisiae, also offers an attractive system to decipher the role of chromatin structure in modulating the repair of double‐stranded DNA breaks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The following urease genes of the fission yeast Schizosaccharomyces pombe have been mapped by induced haploidization and tetrad analysis—ure1: chromosome arm III-L; ure2 and ure3: chromosome arm I-R. The previously determined tps19rad1 interval (11–12 cM) has been increased to 18 cM. A convenient medium for rapidly scoring the ure gene markers of fission yeast was developed. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
Although there have been several reports demonstrating the existence of mating factors in the fission yeast Schizosaccharomyces pombe it has not been possible to isolate these factors as cell-free preparations. Such an ability is the first requirement towards a molecular characterization of these factors and here I report the successful isolation of a mating factor from S. pombe. This factor, termed M-factor, is released by cells of the cellular mating type M (Minus) and induces mating-specific changes in P-type cells. A reliable and accurate assay for the quantitation of the M-factor, based upon changes in cell volume following exposure to the factor, is also described.  相似文献   

5.
We have isolated and sequenced the ptb1 gene from the fission yeast Schizosaccharomyces pombe. Sequence analysis suggests that Ptb1 is the β subunit of the type-II geranylgeranyltransferase that is responsible for geranylgeranylation of the Rab-like YPT proteins in this yeast. The sequence has been deposited in the EMBL data library under the Accession Number X92183.  相似文献   

6.
The Rrs1 protein plays an essential role in the biogenesis of 60S ribosomal subunits in budding yeast (Saccharomyces cerevisiae). Here, we examined whether the fission yeast (Schizosaccharomyces pombe) homologue of Rrs1 also plays a role in ribosome biogenesis. To this end, we constructed two temperature‐sensitive fission yeast strains, rrs1‐D14/22G and rrs1‐L51P, which had amino acid substitutions corresponding to those of the previously characterized budding yeast rrs1‐84 (D22/30G) and rrs1‐124 (L61P) strains, respectively. The fission yeast mutants exhibited severe defects in growth and 60S ribosomal subunit biogenesis at high temperatures. In addition, expression of the Rrs1 protein of fission yeast suppressed the growth defects of the budding yeast rrs1 mutants at high temperatures. Yeast two‐hybrid analyses revealed that the interactions of Rrs1 with the Rfp2 and Ebp2 proteins were conserved in budding and fission yeasts. These results suggest that the essential function of Rrs1 in ribosome biogenesis may be conserved in budding and fission yeasts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Saccharomyces cerevisiae has been widely used as a model organism in studies of replicative ageing and senescence. The relevance of these studies to ageing in other organisms has, however, been questioned, since this yeast divides by budding rather than fission, the more common pattern in higher organisms. Here we report that, contrary to popular belief, the fission yeast Schizosaccharomyces pombe also undergoes replicative senescence and in a manner superficially analogous to budding yeast. These experiments provide the first evidence of age asymmetry in cell fission and are consistent with the hypothesis of Jazwinski, that asymmetric division underlies culture immortality. Given their evolutionary divergence, comparison of the ageing determinants in fission and budding yeasts may help identify common mechanisms of the ageing process.  相似文献   

8.
The fission yeast Schizosaccharomyces pombe lacks a diverse toolkit of inducible promoters for experimental manipulation. Available inducible promoters suffer from slow induction kinetics, limited control of expression levels and/or a requirement for defined growth medium. In particular, no S. pombe inducible promoter systems exhibit a linear dose–response, which would allow expression to be tuned to specific levels. We have adapted a fast, orthogonal promoter system with a large dynamic range and a linear dose response, based on β‐estradiol‐regulated function of the human oestrogen receptor, for use in S. pombe. We show that this promoter system, termed Z3EV, turns on quickly, can reach a maximal induction of 20‐fold, and exhibits a linear dose response over its entire induction range, with few off‐target effects. We demonstrate the utility of this system by regulating the mitotic inhibitor Wee1 to create a strain in which cell size is regulated by β‐estradiol concentration. This promoter system will be of great utility for experimentally regulating gene expression in fission yeast. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
10.
11.
Reverse genetics in fission yeast is hindered by the lack of a versatile established plasmid shuffle system. In order to screen efficiently and accurately through plasmid-borne mutations in the essential gene for the RNA component of RNase MRP, mrp1, we have developed a system for plasmid shuffling in fission yeast using counterselection on canavanine. The system takes advantage of the ability of the Saccharomyces cerevisiae CAN1 gene to complement a Schizosaccharomyces pombe can1-1 mutation. Two general use plasmids were constructed that allow directional cloning and initial selection for histidine before counterselection by canavanine. The strain constructed for plasmid shuffling carries auxotrophic markers for ade6, leu1, ura4 and his3 along with the can1-1 mutation. Using this system we examined several partial deletions and point mutations in conserved nucleotides of Schizosaccharomyces pombe RNase MRP RNA for their ability to complement a chromosomal deletion of the mrp1 gene. The degree of background canavanine resistance as well as plasmid–plasmid recombination encountered in these experiments was sufficiently low to suggest that the system we have set up for counterselection by canavanine in fission yeast using multicopy plasmids will be widely useful.  相似文献   

12.
The effect of phleomycin, a bleomycin-like antibiotic, has been investigated in the fission yeast, Schizosaccharomyces pombe. We report that in response to phleomycin-induced DNA damage, growth was inhibited and S. pombe cells arrested in the G2-phase of the cell cycle. DNA repair mutants rad9 and rad17 did not arrest and were hypersensitive to phleomycin. Cell cycle mutants that entered mitosis without monitoring the completion of DNA replication also displayed an increased sensitivity to this DNA-damaging agent. Thus, phleomycin could be used as a tool in the fission yeast S. pombe model system for the study of DNA damage and cell cycle checkpoints, or as a new selective agent.  相似文献   

13.
We report the development of a homologous in vitro assay system for analysing translocation of proteins across the endoplasmic reticulum (ER) membrane of the fission yeast Schizosaccharomyces pombe. Our protocol for preparing an S. pombe extract capable of translating natural messenger RNAs was modified from a procedure previously used for Saccharomyces cerevisiae, in which cells are lysed in a bead-beater. However, we were unable to prepare fission yeast microsomes active in protein translocation using existing budding yeast protocols. Instead, our most efficient preparations were isolated by fractionating spheroplasts, followed by extensive washing and size exclusion chromatography of the crude membranes. Translocation of two ER-targeted proteins, pre-acid phosphatase from S. pombe and prepro-α-factor from S. cerevisiae, was monitored using two distinct assays. First, evidence that a fraction of both proteins was sequestered within membrane-enclosed vesicles was provided by resistance to exogenously added protease. Second, the protected fraction of each protein was converted to a higher molecular weight, glycosylated form; attachment of carbohydrate to the translocated proteins was confirmed by their ability to bind Concanavalin A–Sepharose. Finally, we examined whether proteins could be translocated across fission yeast microsomal membranes after their synthesis was complete. Our results indicate that S. cerevisiae prepro-α-factor can be post-translationally imported into the fission yeast ER, while S. pombe pre-acid phosphatase crosses the membrane only by a co-translational mechanism.  相似文献   

14.
Basic methods for fission yeast   总被引:1,自引:0,他引:1  
The fission yeast Schizosaccharomyces pombe is a popular model system, and has been particularly influential in studies of the cell cycle and chromosome dynamics. Despite its differences from Saccharomyces cerevisiae, the tools and methods for fission yeast are conceptually similar to those used in budding yeast. Here, we present basic methods sufficient for a beginner in this system to carry out most required manipulations for genetic analysis or molecular biology.  相似文献   

15.
New tools are needed for speedy and systematic study of the numerous genes revealed by the sequence of the yeast genome. We have developed a novel transformation strategy, based on ‘split-marker’ recombination, which allows generation of chromosomal deletions and direct gene cloning. For this purpose, pairs of yeast vectors have been constructed which offer a number of advantages for large-scale applications such as one-step cloning of target sequence homologs and combinatorial use. Gene deletions or gap-repair clonings are obtained by cotransformation of yeast by a pair of recombinant plasmids. Gap-repair vectors are based on the URA3 marker. Deletion vectors include the URA3, LYS2 and kanMX selection markers flanked by I-SceI sites, which allow their subsequent elimination from the transformant without the need for counter-selection. The application of the ‘split-marker’ vectors to the analysis of a few open reading frames of chromosome XI is described.  相似文献   

16.
The fission yeast Schizosaccharomyces pombe is a useful experimental system for studying the organization of chromosomes within the cell nucleus. S. pombe has a small genome that is organized into three chromosomes. The small size of the genome and the small number of chromosomes are advantageous for cytological and genome‐wide studies of chromosomes; however, the small size of the nucleus impedes microscopic observations owing to limits in spatial resolution during imaging. Recent advances in microscopy, such as super‐resolution microscopy, have greatly expanded the use of S. pombe as a model organism in a wide range of studies. In addition, biochemical studies, such as chromatin immunoprecipitation and chromosome conformation capture, have provided complementary approaches. Here, we review the spatial organization of the S. pombe genome as determined by a combination of cytological and biochemical studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi‐open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. © 2013 The Author. Yeast Published by John Wiley & Sons Ltd.  相似文献   

18.
The fission yeast Schizosaccharomyces pombe homologue of the p40/eIF3h subunit of mammalian translation initiation factor eIF3 has been characterized in this study. We show that this protein physically associates with the 40S ribosomal particles as a constituent of the multimeric eIF3 protein complex, which consists of all five known eIF3 core subunits (eIF3a, eIF3b, eIF3c, eIF3g and eIF3i) as well as the five non‐core subunits (eIF3d, eIF3e, eIF3f, eIF3h and eIF3m) that constitute an eIF3 holocomplex in fission yeast. However, affinity purification of eIF3 from fission yeast cells expressing TAP‐tagged eIF3h suggests the presence of distinct forms of eIF3 that differ in their composition of the non‐core subunits. Further characterization of eIF3h shows that strains lacking eif3h+ (eif3hΔ) are viable and show no gross defects, either in vegetative growth or in the rate of in vivo protein synthesis. Polysome profile analysis shows no apparent defects in translation initiation. Furthermore, deletion of eif3h+ does not affect the ability of the other eIF3 subunits to remain associated with one another in a tight protein complex similar to the situation in wild‐type cells. Additionally, we show that human eIF3h can functionally substitute fission yeast eIF3h in complementing in vivo a genetic deletion of eif3h+. Interestingly, mutant eif3hΔ cells show several prominent phenotypic properties. They are hypersensitive to caffeine and highly defective in meiosis, producing either no spores or incomplete tetrads with a very high frequency. The implications of these results in relation to the functions of eIF3h in Sz. pombe are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The fission yeast Schizosaccharomyces pombe is an important model organism for the study of fundamental questions in eukaryotic cell and molecular biology. A plethora of cellular processes are membrane associated and/or dependent on the proper functioning of cellular membranes. Phospholipids are not only the basic building blocks of cellular membranes; they also serve as precursors to numerous signaling molecules. In this review, we describe the biosynthetic pathways leading to major S. pombe phospholipids, how these pathways are regulated, and what is known about degradation and turnover of fission yeast phospholipids. This review also addresses the synthesis, regulation and the role of water-soluble phospholipid precursors. The last chapter of the review is devoted to the use of S. pombe for the biotechnological production of value-added lipid molecules.  相似文献   

20.
Completion of the fission yeast genome sequence has opened up possibilities for post-genomic approaches. We have constructed a DNA microarray for genome-wide gene expression analysis in fission yeast. The microarray contains DNA fragments, PCR-amplified from a genomic DNA template, that represent > 99% of the 5000 or so annotated fission yeast genes, as well as a number of control sequences. The GenomePRIDE software used attempts to design similarly sized DNA fragments corresponding to gene regions within single exons, near the 3'-end of genes that lack homology to other fission yeast genes. To validate the design and utility of the array, we studied expression changes after a 2 h temperature shift from 25 degrees C to 36 degrees C, conditions widely used when studying temperature-sensitive mutants. Obligingly, the vast majority of genes do not change more than two-fold, supporting the widely held view that temperature-shift experiments specifically reveal phenotypes associated with temperature-sensitive mutants. However, we did identify a small group of genes that showed a reproducible change in expression. Importantly, most of these corresponded to previously characterized heat-shock genes, whose expression has been reported to change after more extreme temperature shifts than those used here. We conclude that the DNA microarray represents a useful resource for fission yeast researchers as well as the broader yeast community, since it will facilitate comparison with the distantly related budding yeast, Saccharomyces cerevisiae. To maximize the utility of this resource, the array and its component parts are fully described in On-line Supplementary Information and are also available commercially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号