首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thermal and biodegradation properties of chitosan (CS)/corn cob (CC) biocomposite films and their irradiation‐crosslinked were tested. The CS/CC biocomposite films after irradiation showed better thermal stability and lower weight loss in enzymatic and soil biodegradation in comparison with unirradiated CS/CC biocomposite films due to the formation of new bonds (radiation‐induced crosslinks). The surface erosion for biodegraded biocomposite films were examined by scanning electron microscope. Furthermore, the formation of new bonds in irradiated biocomposite films were analyzed by Fourier transform infrared spectroscopy. POLYM. ENG. SCI., 59:E59–E68, 2019. © 2018 Society of Plastics Engineers  相似文献   

3.
Phthalic anhydride modified soy protein (PAS)/glycerol plasticized soy protein (GPS) composite films were fabricated by using extrusion and compression‐molding. Modified with phthalic anhydride, the soy protein lost its thermoplastic ability and was used as a filler to reinforce the GPS matrix. Fourier transform infrared spectra, optical transmittance, scanning electron microscope, mechanical tests, water resistance tests, as well as thermo‐gravimetric analysis were carried out to investigate the structure and properties of PAS and the plastic composites. The similar chemical structure of PAS and GPS led to compatibility of the two components resulting in high transparency and enhanced tensile properties of the composites. The water resistance of GPS was also improved by the incorporation of PAS. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42221.  相似文献   

4.
Enzymatically treated cellulose was dissolved in a NaOH/ZnO solvent system and mixed together with poly(ethylene‐co‐acrylic acid) (PE‐co‐AA) or poly(acrylamide‐co‐acrylic acid) (PAA‐co‐AA) polymers, in order to improve the properties of dissolved cellulose and to prepare homogeneous cellulose‐based blends for films and coatings. The solution stage properties of the blends were evaluated by rheological methods and the precipitated dry blends were characterized by dynamic mechanical analysis, differential scanning calorimetry, and scanning electron microscopy. Paperboard coating tests done at laboratory scale showed dissolved cellulose/acrylic acid copolymer‐based blends function well as coating materials. All of the tested blends showed a good resistance against grease in the coating trials, having grease resistance from 60 to 69 days despite a very thin (~2 µm) coating layer. In addition, cellulose/PE‐co‐AA coating showed improved water vapor and oxygen barrier properties when compared with neat dissolved cellulose‐coated paperboard. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40286.  相似文献   

5.
Two groups of polyacrylate latexes with higher (21 ~ 35 °C) or lower (−33 ~ −43 °C) glass transition temperatures (Tg) were prepared by adjusting the monomer ratio of butyl acrylate (BA) and styrene (St), and the effect of acrylic acid (AA) on water-whitening resistance of these latex films was investigated. It was found that the water-whitening resistance of the two groups of latex films was different. With the increase of AA content, the water whitening resistance of the latex films with higher Tg continued to improve, while that of the latex films with lower Tg increased first and then decreased. A series of characterizations, such as light transmittance, water whitening, water absorption, static water contact angle, surface morphology, and optical microscope test of the latex film, and so forth, showed that the reason for this difference was that under higher AA content (≥5%), compared with the polyacrylate latex films with lower Tg, the latex films with higher Tg could reach the saturation state of water absorption quickly, and water in these latex films exhibited continuous and large area distribution, rather than formation of many so-called micro- or nano-scale water sacs that can scatter light as found in the latex films with lower Tg.  相似文献   

6.
A series of ambient self-crosslinkable acrylic resin/protein composite emulsions (PA–Ps) were prepared by copolymerizing the functional monomer acetyl acetylethyl methacrylate (AAEM) with methyl acrylate, butyl acrylate and acrylic acid, and then protein crosslinking agents such as gelatin and casein were also added. The PA–P films were characterized by Fourier transform IR spectroscopy, contact angles, differential scanning calorimeter, thermogravimetric analysis, antisolvent testing and physicomechanical testing. Influences of AAEM and protein dosages on properties of composite films were examined in detail. The results indicate that influences of AAEM and protein on PA–P films are diverse on solvent resistance, physicomechanical properties and thermal properties. With enhancement of AAEM and protein dosages, hardness, solvent resistance to tetrahydrofuran and glass transition temperature (T g) of PA–P films are markedly enhanced, but the decomposing temperatures (T d) are decreased. Tensile strengths are evidently reinforced while elongations at break are lessened. Suitable AAEM and protein dosages could render PA–P films with good water resistance.  相似文献   

7.
Composite films in coacervation condition offer an alternative to change properties of protein-based films, and they present potential applications such as inclusion, stabilization, and release of bioactive compounds in foods. Maximum interactions between soy protein isolate (SPI) (5%) and high methoxyl pectin (PEC) (0.5, 1, 1.5, and 2%), by zeta potential analysis, are found at a pH of 3. The transparency of the SPI films is lost at this pH. When PEC is added to SPI films, the elasticity, solubility, and permeability to water vapor are not significantly altered, but the tensile strength increases. Permeabilities to oxygen are higher for low PEC contents, but as PEC is added, their values are typical of SPI films produced at a pH of 11. A homogeneous structure is found at the higher PEC concentrations. The interactions of PEC–SPI can be useful to tailor films and coatings for applications such as to carry and protect substances of interest. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48732.  相似文献   

8.
There is a global concern about the types of adhesives used for the binding of wood particles, most of which include formaldehyde in their formulation. The aim of this work is to study the effect of raw montmorillonite (Mt) particles on blended urea formaldehyde (UF)/soy protein (SP) adhesives for the manufacture of wood particleboards to reduce the use of this carcinogenic component. Rheology showed that Mt does not alter the viscosity of adhesives at high shear rates, so they can be applied by spray. Thermogravimetric analysis/derivative thermogravimetry (TGA/DTG) analysis revealed an enhancement of their thermal stability due to the presence of clay particles. Polymer–Mt interaction was studied by small amplitude X-ray scattering and scanning electron microscopy. According to these results, the exfoliated structure of the clay particles was achieved. Wood particleboards were manufactured with UF/SP/Mt adhesives in order to study their mechanical properties. The three-point bending test showed that Mt particles improved the modulus of both rupture and elasticity. UF/SP/Mt resins proved to be a prominent product for the development of environmentally friendlier particleboards with desirable mechanical properties.  相似文献   

9.
Katsuyuki Wakabayashi 《Polymer》2006,47(8):2874-2883
Metal soaps, also known as fatty acid salts, resemble oligomers of ethylene/methacrylic or ethylene/acrylic acid (E/(M)AA) ionomers, in that they contain carboxylic salt headgroups and long methylene sequences in their hydrocarbon tails. Such soaps might thus be expected to form miscible blends with E/(M)AA ionomers under suitable conditions, providing a separate route to increasing an ionomer's ion content and modifying its physical properties. We show here that the structure and property modifications induced by blending metal soaps into E/(M)AA ionomers are complex, and depend on both the neutralizing cation and on whether the hydrocarbon tails are crystallizable. In the melt at sufficiently high temperatures, all blends show a coassembled structure, where the salt groups of the soap coaggregate with the salt groups on the ionomer; despite the high ion content of these blends, they retain the melt processability characteristic of neat E/(M)AA ionomers of much lower ion content. Non-crystallizable magnesium oleate and magnesium erucate act as permanent plasticizers, lowering the matrix glass transition temperature. Magnesium stearate, whose alkyl tails easily form a rotator phase, can slowly ‘cocrystallize’ with ethylene sequences in the ionomers, leading to high moduli; however, primary crystallization is suppressed in these blends. Finally, while sodium stearate is miscible with the ionomers at elevated temperatures, it phase-separates on cooling, prior to crystallization of the ionomer; such blends are essentially composites of pure stearate and ionomer phases, with their associated individual properties, rather than possessing new structures or properties resulting from coassembly.  相似文献   

10.
The influence of fiber treatment on the properties of biocomposites derived from grass fiber and soy based bioplastic was investigated with environmental scanning electron microscopy, thermal and mechanical properties measurements. Grass fibers were treated with alkali solution that reduced the inter-fibrillar region of the fiber by removing hemicellulose and lignin, which reduce the cementing force between fibrils. This led to a more homogenous dispersion of the biofiber in the matrix as well as increase in the aspect ratio of the fiber in the composite, resulting in an improvement in fiber reinforcement efficiency. This led to enhancement in mechanical properties including tensile and flexural properties as well as impact strength. Additionally, the alkali solution treatment increased the concentration of hydroxyl groups on the surface, which led to a better interaction between the fibers and the matrix.  相似文献   

11.
In order to enhance the interfacial adhesion between wood fiber and an unsaturated polyester matrix (UPE), acrylic acid (acrylic acid)/poly(methyl methacrylate), and (acrylic acid)/silanization (AAS) were used to treat the wood fibers. The mechanical properties and the impact fracture surfaces of the prepared composites were measured and characterized, and the fracture mechanism of these kinds of composites was analyzed. The results showed that the AAS composites possessed the optimum comprehensive mechanical properties. When the weight fraction of wood fiber was 16%, the flexural strength and flexural modulus of the AAS composites were increased by 28.9 and 51.8%, respectively, compared to those of untreated composites. The highest tensile strength and lowest water absorption were also noted for AAS composites. These composites possessed the strongest interfacial adhesion between wood fiber and the UPE matrix. J. VINYL ADDIT. TECHNOL., 19:18–24, 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
Graft copolymerization of acrylic acid/acrylonitrile (AAc/AN) comonomer onto low‐density poly(ethylene) (LDPE) and poly(ethylene terephthalate) (PET) films using direct radiation grafting technique has been investigated. The effect of different reaction conditions on the grafting yield was studied. The structure of the grafted films at different compositions was characterized by FTIR, TGA, SEM, and XRD. Biodegradation of grafted LDPE and PET was investigated by burial method in two types of Egyptian soils (agricultural and desert soils). The bacteria responsible for biodegradation were isolated and characterized, and the capacities for the growth on these polymers as substrates were compared. The isolates from agricultural soil were characterized as Pseudomonas, Alcaligenes, Bacillus, Proteus, and Enterobacter, whereas the isolates from desert soil were characterized as Alcaligenes, Bacillus, and Pseudomonas. The highest degradation rate was found to be achieved using agricultural soil. It is found that the isolated strains belonging to the genus Pseudomonas were mainly responsible for the degradation of both polymers. It has also been found that the increase of AAc ratio in the composition increases the hydrophilicity of the films and the degradation rate. PET polymer is generally found to be more resistant to the biodegradation than LDPE in the two types of soils tested. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
以Na HSO3(亚硫酸氢钠)封闭的PAPI(多苯基多甲基多异氰酸酯)作为化学交联剂,对DSP[碱降解改性SPI(大豆分离蛋白)]进行交联改性,制得工艺操作性能良好的胶合板用改性SPI胶粘剂。研究结果表明:Na HSO3能封闭PAPI中的活性—NCO基团,从而延长了改性SPI胶粘剂的适用期(为2~5 h);封闭型PAPI能提高改性SPI胶粘剂的耐水性,其湿态胶接强度(0.8~1.0 MPa)满足国家标准中II类胶合板的使用要求;当w(封闭型PAPI)=15%(相对于DSP质量而言)、w(Na HSO3)=0.4%(相对于PAPI质量而言)时,改性SPI胶粘剂具有相对最佳的工艺操作性能和耐水性。  相似文献   

14.
Biodegradable films, with starch as a matrix, were developed and reinforced with wheat and corn hulls. The effect of the particle size of the filler on the microstructure and mechanical and barrier properties of starch‐based films was investigated. We observed that the addition of hulls enhanced the modulus, tensile strength, and impact strength of the starch matrix at the expense of its elongation. The water‐vapor transmission rate results show that corn starch was more efficient in reducing the water‐vapor permeability than wheat hulls. Scanning electron microscopy observations indicated that the compatibility of both fillers with the matrix was quite good; this was expected because all of the components used in this study were hydrophilic and exhibited polar behavior. Optical microscopy and X‐ray diffraction observations indicated that the processing conditions did not affect the crystalline and geometric structures of the hulls. Because all of the components used in this study were from food resources, the films could also be used for edible packaging. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45159.  相似文献   

15.
Blends of polypropylene (PP) with 0 to 100 wt% of polypropylene grafted with acrylic acid (AA-g-PP) were used to promote the adhesion to polyamide 6 (PA 6) in a three-layer coextruded film without using an additional adhesive or tie-layer. The effect of modified polymer content and its molecular weight on interfacial adhesion between PP and PA 6 was determined by T-peel strength measurements. The effect of melt temperature and bonding time on peel strength was determined. Oxygen and water vapor transmission rates of the films were measured. The peel strength of fusion bonded layers of PP/AA-g-PP blends with PA 6 strongly depends on bonding temperature and time, as well as on the molecular weight of the functionalized polymer. The peeled films surfaces were characterized using FTIR-ATR and scanning electron microscopy (SEM). Tensile properties of three-layer films, made up of PA 6 as the central layer and PP/AA-g-PP blends as the two external layers, are improved with increase in the acrylic acid (AA) content in the blend. The formation of an in situ copolymer between AA in the blend and the terminal amine groups of PA 6 was confirmed by the Moalu test.  相似文献   

16.
Alginate hydrogels are combined with soy protein isolate (SPI), a plant derived protein with low immunogenicity, appropriate biodegradability and low cost, to produce biocompatible films, and microcapsules. The cell–material interaction is assessed through the use of mouse embryotic fibroblast cells (MEF cells) on films, and the results illustrate that the alginate/SPI hydrogel films support cell attachment, spreading, and proliferation. Cell biology results combined with degradation studies suggest that such hydrogels are promising biomaterials for soft tissue regeneration or as wound dressing materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44358.  相似文献   

17.
丙烯酸/丙烯酸甲酯共聚物聚合工艺研究及其表征   总被引:1,自引:0,他引:1  
武成利  李寒旭  董众兵 《应用化工》2005,34(11):697-699
以丙烯酸(AA)、丙烯酸甲酯(MA)为共聚单体,以过硫酸铵和亚硫酸氢钠为氧化还原体系引发剂,异丙醇为链转移剂,以水为溶剂,采用溶液聚合方法,合成P(AA-MA)共聚物,利用红外光谱对合成的共聚物结构和组成进行表征,研究了各因素对共聚物的特性粘数的影响程度,确定了最佳聚合条件为:单体比例为8∶1,加料时间0.5 h,聚合温度80℃,聚合时间2.5 h,过硫酸铵用量6%,亚硫酸氢钠用量2%,异丙醇100%(以单体质量计)。  相似文献   

18.
Conducting films composed of polyaniline (PANI) and poly(acrylic acid) (PAA) were prepared by electrochemical polymerization of aniline in the presence of various concentrations of PAA. The content of PAA moiety on the surface of the composite films (PANI/PAA films) was estimated by determination of carboxyl groups and found to be controlled by the concentration of PAA in polymerization solution. Acid phosphatase (ACP) was immobilized covalently on the PANI/PAA films by the condensation reaction with the carboxyl groups on the films. It was confirmed that the enzyme activity of the ACP-immobilized PANI/PAA film increased with increasing content of PAA moiety on the surface of the film, accompanying an increase in the amount of the immobilized ACP. The activity of the covalently immobilized ACP was significantly higher than that of the ACP adsorbed on the PANI/PAA film. By use of the ACP-immobilized PANI/PAA film as an enzyme electrode, bioelectrocatalytic oxidation of L-ascorbic acid 2-phosphate (ASA2P) was examined. The enzyme electrode gave the current due to the oxidation of ASA2P in proportion to the content of PAA moiety on the surface of the PANI/PAA film used, which was relevant to the activity of the covalently immobilized ACP.  相似文献   

19.
Guar gum (GG) was incorporated into soy protein isolate (SPI) films using a blending solution casting method to form SPI/GG composite films. The effects of SPI and GG contents on the transparency, water susceptibility, mechanical, and gas‐barrier properties of SPI/GG composite films were analyzed. The results showed that SPI/GG composite films with added GG were much more tensile‐resistant, water‐resistant, gas‐barrier properties but less deformable property than SPI control film. The presence of GG also improved film barrier to the light. The analysis results of contact angle measurement, Fourier transform infrared spectroscopy, and scanning electron microscope indicated that GG induced increased network compactness of the composite films which resulted from strong intermolecular interactions, such as hydrogen bonding, that existed between SPI and GG. Findings indicate that GG may be used as a natural means to improve specific properties of SPI films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43382.  相似文献   

20.
The research work is focused on extraction of chitin from Muga silkworms (MS) and its conversion into chitosan by chemical treatment process. The extracted amount of chitin and chitosan from MS were obtained ~8 wt % and ~7 wt %, respectively. Potentiometric titrations, conductometric titrations, elemental analysis, 1H‐NMR and FTIR analyses were employed to calculate the degree of deacetylation of chitosan (extracted at 80 ºC after 10 h) and found as 77% ± 2, 81% ± 1.8, 82% ± 2.4, 97.77% ± 0.3, and 82% ± 1.8, respectively. The deacetylation process of chitin showed pseudo‐first order reaction kinetics and activation energy was estimated as ~15.5 kJ/mole. The extracted chitosan (at 80 ºC after 10 h) showed higher crystallinity and improved thermal stability with respect to chitosan extracted from other marine sources. Subsequently, poly(lactic acid) (PLA) and extracted chitosan dispersed biocomposite films were prepared by solution casting method. Significant dispersion of chitosan (extracted at 80 ºC after 10 h) micro‐particles were observed in biocomposite films using FESEM analysis. Due to chitosan interaction with PLA, significant reduction in thermal degradation and activation energy was observed during nonisothermal degradation scan of such films using Flynn‐Wall‐Ozawa and Kissinger‐Akahira‐Sunose models. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43710.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号