首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self‐cloning strains of industrial brewing yeast were constructed, in which one allele of α‐acetohydroxyacid synthase (AHAS) gene (ILV2) was disrupted by integrating Saccharomyces cerevisiae genes, γ‐glutamylcysteine synthetase gene (GSH1) and copper resistant gene (CUP1) into the locus of ILV2. The self‐cloning strains were selected for their resistance to CuSO4 and identified by PCR amplification. The results of AHAS and glutathione (GSH) assay from fermentation with the self‐cloning strains in 500‐mL conical flask showed that AHAS activity decreased and GSH content increased compared with that of host yeasts. The results of pilot scale brewing in 5‐L fermentation tank also indicated that GSH content in beer fermented with self‐cloning strains T5‐3 and T31‐2 was 1.3 fold and 1.5 fold of that of host QY5 and QY31, respectively; and diacetyl content decreased to 64% and 58% of their hosts, respectively. The self‐cloning strains do not contain any heterologous DNA, they may be more acceptable to the public.  相似文献   

2.
Sake yeast can produce high levels of ethanol in concentrated rice mash. While both sake and laboratory yeast strains belong to the species Saccharomyces cerevisiae, the laboratory strains produce much less ethanol. This disparity in fermentation activity may be due to the strains' different responses to environmental stresses, including ethanol accumulation. To obtain more insight into the stress response of yeast cells under sake brewing conditions, we carried out small-scale sake brewing tests using laboratory yeast strains disrupted in specific stress-related genes. Surprisingly, yeast strains with disrupted ubiquitin-related genes produced more ethanol than the parental strain during sake brewing. The elevated fermentation ability conferred by disruption of the ubiquitin-coding gene UBI4 was confined to laboratory strains, and the ubi4 disruptant of a sake yeast strain did not demonstrate a comparable increase in ethanol production. These findings suggest different roles for ubiquitin in sake and laboratory yeast strains.  相似文献   

3.
Superoxide dismutase (SOD, encoded by SOD1), which can scavenge active oxygen free radicals, is an ideal endogenous antioxidase in beer. In this study, the SOD1 expression cassette was constructed, and this cassette contained the PGK1 promoter, the PGK1 terminator and the SOD1 gene fused to the signal sequence of the yeast mating pheromone α‐factor (MFα1s). One of the prosequences of the PEP4 gene (encoding proteinase A, PrA) in Saccharomyces cerevisiae strain S‐6 was replaced by the SOD1 expression cassette via homologous recombination and the self‐cloning strain S54PS, which could improve the antioxidant capability and foam stability of beer, was successfully obtained. Fermentation results showed that the SOD activity of the final beer brewed with S54PS was increased by 21.06%. Accordingly, the DPPH‐radical scavenging activity of S54PS increased by 30.6% compared with that yielded by the parental strain S‐6. Furthermore, the PrA activity of S54PS was always lower than that of the parental strain at all stages of beer fermentation. The head retention of the beer (255 ± 4 s) was better than that of the parental strain (224 ± 1 s). Hence, this research implies that S54PS exhibits good brewing performance and can be applied to improve the industrial brewing process. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

4.
As one of the three major distilled spirits in the world, traditional Chinese liquor has a distinctive aroma and taste. The brewing process typically involves two stages: the Daqu‐making process and the liquor‐making process. Further, it commonly adopts solid state fermentation in an open environment, which involves diverse microorganisms such as bacteria and fungi. Yeasts, as an integral brewing microorganism, are not only a dominant force in the fermentation process but also play a key role in the quality and character of different flavour liquors. Studies on yeasts associated with Chinese liquor have rarely compared them with those associated with other alcoholic beverages (wine, sake, etc.), especially in the microbiome‐related flavour of the alcoholic beverage. Here, we review the Chinese liquor brewing process, the yeast community in the brewing process, the yeast derived flavour compounds, the interaction between yeasts and other microorganisms and gene level modifications. © 2019 The Institute of Brewing & Distilling  相似文献   

5.
A reference library of ITS PCR/RFLP profiles was collated and augmented to evaluate its potential for routine identification of domestic brewing yeast and known ‘wild’ yeast contaminants associated with wort, beer and brewing processes. This library contains information on band sizes generated by restriction digestion of the ribosomal RNA‐encoding DNA (rDNA) internal transcribed spacer (ITS) region consisting of the 5.8 rRNA gene and two flanking regions (ITS1 and ITS2) with the endonucleases CfoI, HaeIII, HinfI and includes strains from 39 non‐Saccharomyces yeast species as well as for brewing and non‐brewing strains of Saccharomyces. The efficacy of the technique was assessed by isolation of 59 wild yeasts from industrial fermentation vessels and conditioning tanks and by matching their ITS amplicon sizes and RFLP profiles with those of the constructed library. Five separate, non‐introduced yeast taxa were putatively identified. These included Pichia species, which were associated with conditioning tanks and Saccharomyces species isolated from fermentation vessels. Strains of the lager yeast S. pastorianus could be reliably identified as belonging to either the Saaz or Frohberg hybrid group by restriction digestion of the ITS amplicon with the enzyme HaeIII. Frohberg group strains could be further sub‐grouped depending on restriction profiles generated with HinfI.  相似文献   

6.
The excessive use of sulphur dioxide and other chemical preservatives in wine, beer and other fermented food and beverage products to prevent the growth of unwanted microbes holds various disadvantages for the quality of the end‐products and is confronted by mounting consumer resistance. The objective of this study was to investigate the feasibility of controlling spoilage bacteria during yeast‐based fermentations by engineering bactericidal strains of Saccharomyces cerevisiae. To test this novel concept, we have successfully expressed a bacteriocin gene in yeast. The pediocin operon of Pediococcus acidilactici PAC1·0 consists of four clustered genes, namely pedA (encoding a 62 amino acid precursor of the PA‐1 pediocin), pedB (encoding an immunity factor), pedC (encoding a PA‐1 transport protein) and pedD (encoding a protein involved in the transport and processing of PA‐1). The pedA gene was inserted into a yeast expression/secretion cassette and introduced as a multicopy episomal plasmid into a laboratory strain (Y294) of S. cerevisiae. Northern blot analysis confirmed that the pedA structural gene in this construct (ADH1P‐MFα1S‐pedA‐ADH1T, designated PED1), was efficiently expressed under the control of the yeast alcohol dehydrogenase I gene promoter (ADH1P) and terminator (ADH1T). Secretion of the PED1‐encoded pediocin PA‐1 was directed by the yeast mating pheromone α‐factor's secretion signal (MFα1S). The presence of biologically active antimicrobial peptides produced by the yeast transformants was indicated by agar diffusion assays against sensitive indicator bacteria (e.g. Listeria monocytogenes B73). Protein analysis indicated the secreted heterologous peptide to be approximately 4·6 kDa, which conforms to the expected size. The heterologous peptide was present at relatively low levels in the yeast supernatant but pediocin activity was readily detected when intact yeast colonies were used in sensitive strain overlays. This study could lead to the development of bactericidal yeast strains where S. cerevisiae starter cultures not only conduct the fermentations in the wine, brewing and baking industries but also act as biological control agents to inhibit the growth of spoilage bacteria. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Beer barley LTP1 in beer is an important component of beer foam, and it participates in the formation of beer foam. The digestion of beer barley LTP1 by proteinase A from brewing yeast leads to the decline of beer foam stability, especially for the unpasteurized beer. The objective of this study was to construct an industrial brewing yeast strain to secrete recombinant barley LTP1 into fermenting wort during beer fermentation for the foam stability improvement. We constructed barley LTP1 expression cassette and transformed into the host industrial yeast cells to replace partial PEP4 alleles using homologous recombination method. The expression of b-LTP1 was under control of the constitutive yeast ADH1 promoter, and the concentration of recombinant barley LTP1 secreted by recombinants reached 26.23 mg/L after incubation in YEPD medium for 120 h. The PrA activity of the recombinant strain declined compared with the host strain. The head retention of beer brewed with the recombinant industrial strain (326 ± 12 s) was improved when the host strain WZ65 (238 ± 7 s) and the constructed strain S.c-P-1 (273 ± 10 s) with partial PEP4 gene deficiency were used as control. The present study may provide reference for brewing industries and researches on beer foam stability.  相似文献   

8.
9.
The presence of antimycin‐insensitive respiration in an industrial brewing yeast strain (Saccharomyces cerevisiae AJL 2036) was confirmed by studying the effects of antimycin A (inhibits electron transfer from cyt b to c1) on brewing yeast performance in the presence and absence of oxygen. The inhibitor sodium azide was also used to assess whether blocking electron transfer further downstream of the antimycin‐effective site eliminated the enhanced fermentation parameters observed in the presence of antimycin A. Oligomycin, an inhibitor of the mitrochondrial membrane ATPase, was also used to determine the importance of intramitochondrial ATP synthesis on the observed effects. Fermentations were monitored for overall performance and beer quality indicators. The measured parameters showed no changes due to oligomycin addition indicating that the major source of energy in the cells was cytoplasmically‐generated via glycolysis. Results from the fermentations in the presence of antimycin A confirmed the existence of an alternative respiratory pathway, the stimulation of which resulted in improved fermentative performance. It is postulated that antimycin A enhanced the fermentation rate by increasing the amount of yeast growth. This caused a direct pull on yeast metabolism including fermentative activity. The mechanism was postulated to involve an increased supply of critical growth intermediates in the presence of antimycin A rather than an increased intramitochondrial energy supply per se.  相似文献   

10.
Standard brewing yeast cannot utilize larger oligomers or dextrins, which represent about 25% of wort sugars. A brewing yeast strain that could ferment these additional sugars to ethanol would be useful for producing low‐carbohydrate diabetic or low‐calorie beers. In this study, a brewing yeast strain that secretes glucoamylase was constructed by mating. The resulting Saccharomyces cerevisiae 278/113371 yeast was MAT a/α diploid, but expressed the glucoamylase gene STA1 . At the early phase of the fermentation test in malt extract medium, the fermentation rate of the diploid STA1 strain was slower than those of both the parent strain S. cerevisiae MAFF113371 and the reference strain bottom‐fermenting yeast Weihenstephan 34/70. At the later phase of the fermentation test, however, the fermentation rate of the STA1 yeast strain was faster than those of the other strains. The concentration of ethanol in the culture supernatant of the STA1 yeast strain after the fermentation test was higher than those of the others. The concentration of all maltooligosaccharides in the culture supernatant of the STA1 yeast strain after the fermentation test was lower than those of the parent and reference strains, whereas the concentrations of flavour compounds in the culture supernatant were higher. These effects are due to the glucoamylase secreted by the constructed STA1 yeast strain. In summary, a glucoamylase‐secreting diploid yeast has been constructed by mating that will be useful for producing novel types of beer owing to its different fermentation pattern and concentrations of ethanol and flavour compounds. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

11.
The traditional Japanese alcoholic beverage sake is produced by fermentation of rice by Saccharomyces cerevisiae and Aspergillus oryzae. A. oryzae releases ferulic acid, an antioxidant, from steamed rice during the fermentation process. The concentration of ferulic acid increased with time during fermentation and the production rate peaked 9–12 days post inoculation. Analysis of the fermentation cultures of Aspergillus oryzae, by high‐performance liquid chromatography (HPLC), revealed that p‐coumaric acid induced an 18.9‐fold increase in the level of ferulic acid. Furthermore, SDS‐PAGE analysis revealed an increase or decrease in the level of specific proteins after the addition of p‐coumaric acid to fermentation cultures of Aspergillus oryzae. Ferulate esterase (FAE) activity was observed in the fermented sake ten days following the start of the fermentation process. These results suggest that the level of ferulic acid is regulated by the enzymes synthesized by A. oryzae during the sake brewing process.  相似文献   

12.
13.
Recently there has been increased interest in using non‐Saccharomyces yeasts to ferment beer. The worldwide growth of craft beer and microbreweries has revitalised the use of different yeast strains with a pronounced impact on aroma and flavour. Using non‐conventional yeast gives brewers a unique selling point to differentiate themselves. Belgian brewers have been very successful in using wild yeasts and mixed fermentations that often contain non‐Saccharomyces yeasts. Historically, ancient beers and beers produced before the domestication of commonly used Saccharomyces strains most likely included non‐Saccharomyces species. Given the renewed interest in using non‐Saccharomyces yeasts to brew traditional beers and their potential application to produce low‐alcohol or alcohol‐free beer, the fermentation and flavour characteristics of different species of non‐Saccharomyces pure culture yeast were screened for brewing potential (Brettanomyces anomalus and bruxellensis, Candida tropicalis and shehatae, Saccharomycodes ludwigii, Torulaspora delbrueckii, Pichia kluyveri, Zygosaccharomyces rouxii). Alcohol‐free beer is already industrially produced using S. ludwigii, a maltose‐negative species, which is a good example of the introduction of non‐Saccharomyces yeast to breweries. Overall, non‐Saccharomyces yeasts represent a large resource of biodiversity for the production of new beers and have the potential for wider application to other beverage and industrial applications. Almost all of the trials reviewed were conducted with varying fermentation parameters, which plays an important role in the outcome of the studies. To understand these impacts all trials were described with their major fermentation parameters. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

14.
A pilot‐scale fermentation was performed using SSU1‐overexpressing bottom‐fermenting yeast strains constructed by ‘self‐cloning’. In these strains, the gene SSU1, encoding a plasma membrane protein that excretes sulphite, was highly expressed. The rate of fermentation of the two SSU1‐overexpressing strains tested showed some reduction during the mid‐fermentation phase as compared with the parental strain. These differences, however, did not affect overall fermentation and the final apparent extracts had decreased to a level normally obtained during brewing. The concentration of hydrogen sulphide in the wort remained low during fermentation in the case of the two self‐cloning strains compared with the parent. The concentration of 2‐mercapto‐3‐methyl‐1‐butanol, a sulphur compound that causes an ‘onion‐like’ off‐flavour, was also reduced in the case of the self‐cloning strains, a result confirmed by sensory evaluation of the beer immediately after bottling. Furthermore, with these strains the anti‐oxidation potential of bottled beer, as measured by electron spin resonance, was improved and the concentration of trans‐2‐nonenal in bottled beer after 7 days of accelerated aging at 37°C was decreased. These observations, together with the lower stale flavour score determined by sensory evaluation of bottled beer after a month of aging at 25°C, indicated that the flavour stability of the beer had been successfully improved. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

15.
The vicinal diketones (VDK), such as diacetyl and 2,3‐pentandione, impart an unpleasant butter‐like flavour to beer. Typically, these are required to be reduced below the flavour thresholds during the maturation (lagering) stages of the brewing process. To shorten beer maturation time, we constructed a self‐cloning, bottom‐fermenting yeast with low VDK production by integrating ILV5, a gene encoding a protein that metabolizes α‐acetolactate and α‐aceto‐α‐hydroxybutyrate (precursors of VDK). A DNA fragment containing Saccharomyces cerevisiae‐type ILV5 was inserted upstream of S. cerevisiae‐type ILV2 in bottom‐fermenting yeast to construct self‐cloning strains with an increased copy number of ILV5. Via transformation, ILV2 was replaced with the sulfometuron methyl (SM) resistance gene SMR1B, which differs by a single nucleotide, to create SM‐resistant transformants. The wort fermentation test, using the SC‐ILV5‐homo inserted transformant, confirmed a consecutive reduction in VDK and a shortening period during which VDK was reduced to within the threshold. The concentrations of ethyl acetate, isoamyl acetate, isoamyl alcohol, 1‐propanol, isobutyl alcohol and active isoamyl alcohol (flavour components) were not changed when compared with the parent strain. We successfully constructed self‐cloning brewer's yeast in which SC‐ILV5 was homo‐inserted. Using the transformed yeast, the concentration of VDK in fermenting wort was reduced, whereas the concentrations of flavour components were not affected. This genetically stable, low VDK‐producing, self‐cloning bottom‐fermenting yeast would contribute to the shortening of beer maturation time without affecting important flavour components produced by brewer's yeast. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A set of vectors was constructed that enable combined and systematic testing of metabolic pathway genes in Saccharomyces cerevisiae. The vectors are available as CEN/ARS and 2 µ‐based plasmids with a choice of three inducible promoters, PGAL1, PCUP1 and PADH2. These features offer control over the initiation and level of gene expression. In addition, the vectors can be used as templates to generate PCR fragments for targeted chromosomal integration of gene expression cassettes. Selection markers are flanked by loxP elements to allow efficient CreA‐mediated marker removal and recycling after genomic integration. For each promoter, expression of a bacterial lacZ reporter gene was characterized from plasmid‐based and integrated chromosomal cassettes, and compared to that of the glycolytic PPGK1 promoter. Plasmid stabilities were also determined. The promoters showed distinct activity profiles useful for modulating expression of metabolic pathway genes. This series of plasmids with inducible promoters extends our previous vector set carrying the constitutive promoters PPGK1, PTEF1 and PHXT7‐391. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The fission yeast Schizosaccharomyces pombe lacks a diverse toolkit of inducible promoters for experimental manipulation. Available inducible promoters suffer from slow induction kinetics, limited control of expression levels and/or a requirement for defined growth medium. In particular, no S. pombe inducible promoter systems exhibit a linear dose–response, which would allow expression to be tuned to specific levels. We have adapted a fast, orthogonal promoter system with a large dynamic range and a linear dose response, based on β‐estradiol‐regulated function of the human oestrogen receptor, for use in S. pombe. We show that this promoter system, termed Z3EV, turns on quickly, can reach a maximal induction of 20‐fold, and exhibits a linear dose response over its entire induction range, with few off‐target effects. We demonstrate the utility of this system by regulating the mitotic inhibitor Wee1 to create a strain in which cell size is regulated by β‐estradiol concentration. This promoter system will be of great utility for experimentally regulating gene expression in fission yeast. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Amylolytic brewing yeast can be used for the production of low carbohydrate beer and for maximizing fermentation efficiency. In this paper we describe the characterisation of amylolytic brewing yeast in which the STA2 (DEXI) gene, which codes for an extracellular glucoamylase, was cloned under two different promoters; PGK (phosphoglycerate kinase) and GPD1 (sn-glycerol-3-phosphate dehydrogenase) present on episomal plasmids. Both amylolytic strains were shown to ferment and degrade wort as efficiently as the control strain supplemented with an exogenous commercial glucoamylase, despite reduced intracellular glycogen levels (30% of wild-type). However, the nature of the promoter on the expression plasmid was shown to influence both the growth rate of the amylolytic strains and the stability of the plasmids during non-selective growth. One of the strains containing plasmid pDVX4 (GPD promoter) was found to show high levels of stability when tested in ten successive pilot scale (8Hlitre) fermentations.  相似文献   

19.
The present paper is the last report of a comprehensive study regarding the influence of the serial repitching of Saccharomyces pastorianus TUM 34/70 on the composition of a barley, buckwheat or quinoa fermentation medium. In particular, it focuses on the production dynamics of important volatile compounds typically associated with the aroma of beer. Samples were taken every 24 h after 11 serial repitchings of a single starter culture, analysed for the particular aroma compound content by distillation followed by gas chromatography with flame ionization detection. The term ‘serial repitching factor’ is used for the first time to support the visual evaluation of the influence of serial repitching. Results showed that the levels of methanol in the quinoa wort fermentation were only slightly higher than in barley and in practical terms independent of successive fermentation. The behaviour of acetaldehyde in quinoa was similar to that in barley. However, there was a final 2‐fold lower production of some important aroma compounds compared with barley and buckwheat and for this reason quinoa cannot be recommended as a gluten‐free substitute to produce a bottom‐fermented beer. Regarding the buckwheat wort fermentation, a 2‐ to 3‐times lower final acetaldehyde content than in barley is desirable, whereas a relatively high methanol content is not desirable. Barley and buckwheat showed comparable sum concentrations and similar overall profiles of some important aroma compounds. From this perspective, buckwheat appears to be a promising substitute for barley as a brewing raw material. The overall conclusions of our comprehensive study (Parts I–III) are that buckwheat shows adequate brewing properties to substitute for barley in the commercial preparation of a bottom‐fermented gluten‐free beer‐like beverage, and yeast can be repitched at least 11 times. In contrast, quinoa in practical terms shows no substitutional potential for barley in beer; however, it has many nutritious advantages, thus the commercial preparation of a unique, bottom‐fermented gluten‐free ‘non‐beer‐like’ beverage – where the yeast could be repitched six times at most – appears feasible. Copyright © 2015 The Institute of Brewing & Distilling  相似文献   

20.
A combination of biological and non‐biological factors has led to the interspecific hybrid yeast species Saccharomyces pastorianus becoming one of the world's most important industrial organisms. This yeast is used in the production of lager‐style beers, the fermentation of which requires very low temperatures compared to other industrial fermentation processes. This group of organisms has benefited from both the whole‐genome duplication in its ancestral lineage and the subsequent hybridization event between S. cerevisiae and S. eubayanus, resulting in strong fermentative ability. The hybrid has key traits, such as cold tolerance and good maltose‐ and maltotriose‐utilizing ability, inherited either from the parental species or originating from genetic interactions between the parent genomes. Instability in the nascent allopolyploid hybrid genome may have contributed to rapid evolution of the yeast to tolerate conditions prevalent in the brewing environment. The recent discovery of S. eubayanus has provided new insights into the evolutionary history of S. pastorianus and may offer new opportunities for generating novel industrially‐beneficial lager yeast strains. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号