首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving the reliability of wind turbines (WT) is an essential component in the bid to minimize the cost of energy, especially for offshore wind because of the difficulties associated with access for maintenance. Numerous studies have shown that WT gearbox and generator failure rates are unacceptably high, particularly given the long downtime incurred per failure. There is evidence that bearing failures of the gearbox high‐speed stage (HSS) and generator account for a significant proportion of these failures. However, the root causes of these failure data are not known, and there is therefore a need for fundamental computational studies to support the valuable ‘top down’ reliability analyses. In this paper, a real (proprietary) 2 MW geared WT was modelled to compute the gearbox–generator misalignment and predict the impact of this misalignment upon the gearbox HSS and generator bearings. At rated torque, misalignment between the gearbox and generator of 8500 µm was seen. For the 2 MW WT analysed, the computational data show that the L10 fatigue lives of the gearbox HSS bearings were not significantly affected by this misalignment but that the L10 fatigue lives of the generator bearings, particularly the drive‐end bearing, could be significantly reduced. It is proposed to apply a nominal offset to the generator to reduce the misalignment under operation, thereby reducing the loading on the gearbox HSS and generator bearings. The value of performing integrated system analyses has been demonstrated, and a robust methodology has been outlined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
B. J. Gould  D. L. Burris 《风能》2016,19(6):1011-1021
Recent studies suggest that wind shear and the resulting pitch moments increase bearing loads and thereby contribute to premature wind turbine gearbox failure. In this paper, we use momentum‐based modeling approaches to predict the pitch moments from wind shear. The non‐dimensionalized results, which have been validated against accepted aeroelastic results, can be used to determine thrust force, pitch moment and power of a general rotor as a function of the wind shear exponent. Even in extreme wind shear (m = 1), the actual thrust force and power for a typical turbine (R* < 0.5) were within 8% and 20% of the nominal values (those without wind shear), respectively. The mean pitch moment increased monotonically with turbine thrust, rotor radius and wind shear exponent. For extreme wind shear (m = 1) on a typical turbine (R* = 0.5), the mean pitch moment is ~25% the product of thrust force and rotor radius. Analysis of wind shear for a typical 750 kW turbine revealed that wind shear does not significantly affect bearing loads because it counteracts the effects of rotor weight. Furthermore, even though general pitch moments did significantly increase bearing loads, they were found to be unlikely to cause bearing fatigue. Analyses of more common low wind‐speed cases suggest that bearing under‐loading and wear are more likely to contribute to premature bearing failure than overloading and classical surface contact fatigue. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates the relationship between wind turbine main‐bearing loads and the characteristics of the incident wind field in which the wind turbine is operating. For a 2‐MW wind turbine model, fully aeroelastic multibody simulations are performed in 3D turbulent wind fields across the wind turbine's operational envelope. Hub loads are extracted and then injected into simplified drivetrain models of three types of main‐bearing configuration. The main‐bearing reaction loads and load ratios from the simplified model are presented and analysed. Results indicate that there is a strong link between wind field characteristics and the loading experienced by the main bearing(s), with the different bearing configurations displaying very different loading behaviours. Main‐bearing failure rates determined from operational data for two drivetrain configurations are also presented.  相似文献   

4.
An analytical formulation was developed to estimate the load‐sharing and planetary loads of a three‐point suspension wind turbine drivetrain considering the effects of non‐torque loads, gravity and bearing clearance. A three‐dimensional dynamic drivetrain model that includes mesh stiffness variation, tooth modifications and gearbox housing flexibility was also established to investigate gear tooth load distribution and non‐linear tooth and bearing contact of the planetary gears. These models were validated with experimental data from the National Renewable Energy Laboratory's Gearbox Reliability Collaborative. Non‐torque loads and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox loads and disturb load sharing. Clearance in the carrier bearings reduces the bearing stiffness significantly. This increases the amount of pitching moment transmitted from the rotor to the gear meshes and disturbs the planetary load share, thereby resulting in edge loading. Edge loading increases the likelihood of tooth pitting and planet‐bearing fatigue, leading to reduced gearbox life. Additionally, at low‐input torque, the planet‐bearing loads are often less than the minimum recommended load and thus susceptible to skidding. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The emphasis in this article is on the impact of fault ride‐through requirements on wind turbines structural loads. Nowadays, this aspect is a matter of high priority as wind turbines are required more and more to act as active components in the grid, i.e. to support the grid even during grid faults. This article proposes a computer approach for the quantification of the wind turbines structural loads caused by the fault ride‐through grid requirements. This approach, exemplified for the case of a 2MW active stall wind turbine, relies on the combination of knowledge from complimentary simulation tools, which have expertise in different specialized wind turbines design areas. Two complimentary simulation tools are considered i.e. the detailed power system simulation tool PowerFactory from DIgSILENT and the advanced aeroelastic computer code HAWC2, in order to assess of the dynamic response of wind turbines to grid faults. These two tools are coupled sequently in an offline approach, in order to achieve a thorough insight both into the structural as well as the electrical wind turbine response during grid faults. The impact of grid requirements on wind turbines structural loads is quantified by performing a rainflow and a statistical analysis for fatigue and ultimate structural loads, respectively. Two cases are compared i.e. one where the turbine is immediately disconnected from the grid when a grid fault occurs and one where the turbine is equipped with a fault ride‐through controller and therefore it is able to remain connected to the grid during the grid fault. Copyright copy; 2010 John Wiley & Sons, Ltd.  相似文献   

6.
As many of the installed wind turbines (WTs) get older or approach their design life, there will be a drive to keep extending the lives of the main components especially the gearbox. The challenge of operations and maintenance will potentially be even more as there will be a need to keep the cost to a minimum. Similarly, as years of experience of operating WTs accumulate, knowledge about the behaviour and failure of subsystems is gained as well. Also with good documentation and repository of historical operational, performance and failure data, future decisions of operations and maintenance can be taken on the basis of insights from past experience. This paper presents an approach for implementing preventive maintenance (PM) by using historical failure data to determine the optimal PM interval required to maintain desired reliability of a typical module or subassembly. This paper builds upon previous research in the area of WT gearbox reliability analysis and prediction, taking it further by examining the relationships between the frequency of a PM task and the reliability, availability and maintenance costs. The approach presented demonstrates how historical in‐service failure data can be used in PM task selection based on the minimum maintenance cost and maximum availability. Available historical field failure data of the high speed module of a Vestas 2MW WT gearbox is used to validate the approach and show its practicality. The results of this study are then presented—indicating that choosing the right PM interval based on the minimum unit maintenance cost and maximum availability also improves WT gearbox reliability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Wind turbine gearbox bearings (WTGBs) are failing prematurely, leading to increased operational costs of wind energy. Bearing failure by white structure flaking (WSF) and axial cracking may both be caused by the propagation of white etching cracks (WECs) and have been observed to cause premature failures; however, their damage mechanism is currently not well understood. Crack initiation has been found to occur at subsurface material defects in bearing steel, which may develop into WECs. One hypothesis for WEC formation at these defects, such as non‐metallic inclusions, is that repetitive impact loading of a rolling element on a bearing raceway, due to torque reversals and transient loading during operation, leads to high numbers of stress‐concentrating load cycles at defects that exceed the material yield strength. In this study, a number of tests were carried out using a reciprocating hammer‐type impact rig. Tests were designed to induce subsurface yielding at stress concentrating manganese sulfide (MnS) inclusions. The effects of increasing surface contact stress and number of impact cycles, with and without surface traction, were investigated. Damage adjacent to MnS inclusions, similar to that observed in a failed WTGB raceway, was recreated on bearing steel test specimens. It has been found that increasing the subsurface equivalent stresses and the number of impact cycles both led to increased damage levels. Damage was observed at subsurface equivalent stresses of above 2.48 GPa after at least 50,000 impact cycles. WECs were recreated during tests that applied surface traction for 1,000,000 impacts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Accurate prediction of long‐term ‘characteristic’ loads associated with an ultimate limit state for design of a 5‐MW bottom‐supported offshore wind turbine is the focus of this study. Specifically, we focus on predicting the long‐term fore–aft tower bending moment at the mudline and the out‐of‐plane bending moment at the blade root of a monopile‐supported shallow‐water offshore wind turbine. We employ alternative probabilistic predictions of long‐term loads using inverse reliability procedures in establishing the characteristic loads for design. Because load variability depends on the environmental conditions (defining the wind speed and wave height), we show that long‐term predictions that explicitly account for such load variability are more accurate, especially for environmental states associated with above‐rated wind speeds and associated wave heights. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Improvement of condition monitoring (CM) systems for wind turbines (WTs) and reduction of the cost of wind energy are possible if knowledge about the condition of different WT components is available. CM based on the WT drive train shaft torque signal can give a better understanding of the gearbox failure mechanisms as well as provide a method for detecting mass imbalance and aerodynamic asymmetry. The major obstacle preventing the industrial application of CM based on the shaft torque signal is the costly measurement equipment which is impractical for long‐term use on operating WTs. This paper suggests a novel approach for low‐cost, indirect monitoring of the shaft torque from standard WT measurements. The shaft torque is estimated recursively from measurements of generator torque, high speed shaft and low speed shaft angular speeds using the well‐known Kalman filter theory. The performance of the augmented Kalman filter with fading memory (AKFF) is compared with the augmented Kalman filter (AKF) using simulated data of the WT for different load conditions, measurement noise levels and WT fault scenarios. A multiple‐model algorithm, based on a set of different Kalman filters, is designed for practical implementation of the shaft torque estimator. Its performance is validated for a scenario where there are frequent changes of operating points. The proposed cost‐effective shaft torque estimator overcomes all major problems, which prevent the industrial application of CM systems based on shaft torque measurements. Future work will be focused on validating the method using experimental data and developing suitable signal processing algorithms for fault detection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
With the increase of the wind turbine capacity, failures occur on the drivetrain of wind turbines frequently. Since faults of bearings in the wind turbine can lead to long downtime and even casualties, fault diagnosis of the drivetrain is very important to reduce the maintenance cost of the wind turbine and improve economic efficiency. However, the traditional diagnosis methods have difficulty in extracting the impulsive components from the vibration signal of the wind turbine because of heavy background noise and harmonic interference. In this paper, we propose a novel method based on data‐driven multiscale dictionary construction. Firstly, we achieve the useful atom through training the K‐means singular value decomposition (K‐SVD) model with a standard signal. Secondly, we deform the chosen atom into different shapes and construct the final dictionary. Thirdly, the constructed dictionary is used to sparsely represent the vibration signal, and orthogonal matching pursuit (OMP) is performed to extract the impulsive component. The proposed method is robust to harmonic interference and heavy background noise. Moreover, the effectiveness of the proposed method is validated by numerical simulation and two experimental cases including the bearing fault of the wind turbine generator in the field test. The overall results indicate that compared with traditional methods, the proposed method is able to extract the fault characteristics from the measured signals more efficiently.  相似文献   

11.
Four‐contact‐point slewing bearings are widely used in wind turbine generators (WTGs) to adjust the orientation of the blades and the nacelle to fully exploit wind resources. These bearings must withstand static and fatigue loads; however, at the first stages of the design process, the bearings are commonly selected by considering only static loads. This paper presents a further step of a previous theoretical work published by the authors in the field of the static load‐carrying capacity of four‐contact‐point slewing bearings under axial, radial and tilting‐moment loads. In that work, a generalization of the works by Sjoväll and Rumbarger was presented, providing an acceptance surface of the bearing in the load space. The contact angle of the balls was assumed to be load independent. The present work improves that development by considering the influence of the variability of the contact angle with the applied load, and as a result, the acceptance surface has been redefined. By comparing the results with those of the finite element model published by the authors, it is proven that the new model presented in this work is more realistic than the previous one. Thus, it is believed that this methodology can be easily applied for the initial selection of blade and yaw bearings in WTGs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Operation and maintenance costs are significant for large‐scale wind turbines and particularly so for offshore. A well‐organized operation and maintenance strategy is vital to ensure the reliability, availability, and cost‐effectiveness of a system. The ability to detect, isolate, estimate, and perform prognoses on component degradation could become essential to reduce unplanned maintenance and downtime. Failures in gearbox components are in focus since they account for a large share of wind turbine downtime. This study considers detection and estimation of wear in the downwind main‐shaft bearing of a 5‐MW spar‐type floating turbine. Using a high‐fidelity gearbox model, we show how the downwind main bearing and nacelle axial accelerations can be used to evaluate the condition of the bearing. The paper shows how relative acceleration can be evaluated using statistical change‐detection methods to perform a reliable estimation of wear of the bearing. It is shown in the paper that the amplitude distribution of the residual accelerations follows a t‐distribution and a change‐detection test is designed for the specific changes we observe when the main bearing becomes worn. The generalized likelihood ratio test is extended to fit the particular distribution encountered in this problem, and closed‐form expressions are derived for shape and scale parameter estimation, which are indicators for wear and extent of wear in the bearing. The results in this paper show how the proposed approach can detect and estimate wear in the bearing according to desired probabilities of detection and false alarm.  相似文献   

13.
The flow in the meridian plane of a high aspect ratio vertical‐axis wind turbine (VAWT) can be described as two dimensional. The wake that is generated by the VAWT in a two‐dimensional flow consists of shed vorticity and is a result of the temporal variation of bound circulation on the blades, following Kelvin's theorem. The strength and location of the vorticity that is produced by the VAWT in a two‐dimensional flow are thus independent of the average bound circulation on the blade. Two independent computational models—a potential flow panel model and a method that is based on the vorticity–velocity formulation of the Navier–Stokes equations—have been used to show that the VAWT can produce the same power for different azimuthal distributions of the blade aerodynamic loading. It is thus demonstrated that the instantaneous blade aerodynamic loading and the power conversion of a VAWT are decoupled. This observation has, potentially, significant impact on the design of the VAWT and reopens the research on asymmetric blade shapes in order to optimize the performance of this turbine configuration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The stiffness of yaw and pitch slewing bearings has a critical influence on the structural behaviour of wind turbine generators. Thus, it is commonly required by designers for their simulations to estimate deformations and select the most suitable bearing for their working conditions in preliminary design stages. In this work, a design of experiments was carried out via finite element analysis to obtain the stiffness curves of all of the standard four‐point contact slewing bearings from the catalogues of manufacturers under radial, axial, and tilting loads. From these results, a set of simple formulas to calculate the ring deformations were adjusted. Combining them with contact deformation results obtained in previous work by the authors, a complete and efficient tool for slewing bearing stiffness estimation has been developed.  相似文献   

15.
This paper presents a generalization of previous works developed by the authors in the field of the calculation and selection of slewing bearings, where a theoretical model for the estimation of the static load‐carrying capacity of four‐contact‐point slewing bearings was obtained. Those previous works assumed that there was no preload in the balls; in the present work, the model has been improved in order to consider the effect of the preload, in such a way that it provides more realistic results because this type of bearings are preloaded in several applications to increase the stiffness and therefore the accuracy of the system. In parallel, and for comparison purposes, the finite element model built by the authors in previous works has been also adapted to include the preload in the balls. Both models, theoretical and FE, assess in complete agreement the increase of the stiffness with the preload level; the results show that the static load‐carrying capacity does not vary appreciably with the usual values adopted for the preload. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Z. Jiang  Y. Xing  Y. Guo  T. Moan  Z. Gao 《风能》2015,18(4):591-611
This paper presents an approach for performing a long‐term fatigue analysis of rolling element bearings in wind turbine gearboxes. Multilevel integrated analyses were performed using the aeroservoelastic code HAWC2, the multibody dynamics code SIMPACK, the three‐dimensional finite element code Calyx and a simplified lifetime prediction model for rolling contact fatigue. The National Renewable Energy Laboratory's 750 kW wind turbine and its planetary bearing were studied. Design load cases, including normal production, parked and transient load cases, were considered. To obtain the internal bearing load distribution, an advanced approach combining a finite element/contact mechanics model and a response surface model were used. In addition, a traditional approach, the Harris model, was also applied for comparison. The long‐term probability distribution of the bearing raceway contact pressure range was then obtained using Weibull and generalized Gamma distribution functions. Finally, we estimated the fatigue life of the bearing, discussed the differences of the methods used to obtain the bearing internal loads and analyzed the effects of the environmental conditions and load cases on the results. The Harris model may underestimate the inner raceway life by 55.7%, which can cause large load fluctuations along the raceways. The bearing fatigue life is very sensitive to the wind distribution and less affected by the transient and parked load cases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Nikolay Dimitrov 《风能》2016,19(4):717-737
We have tested the performance of statistical extrapolation methods in predicting the extreme response of a multi‐megawatt wind turbine generator. We have applied the peaks‐over‐threshold, block maxima and average conditional exceedance rates (ACER) methods for peaks extraction, combined with four extrapolation techniques: the Weibull, Gumbel and Pareto distributions and a double‐exponential asymptotic extreme value function based on the ACER method. For the successful implementation of a fully automated extrapolation process, we have developed a procedure for automatic identification of tail threshold levels, based on the assumption that the response tail is asymptotically Gumbel distributed. Example analyses were carried out, aimed at comparing the different methods, analysing the statistical uncertainties and identifying the factors, which are critical to the accuracy and reliability of the extrapolation. The present paper describes the modelling procedures and makes a comparison of extrapolation methods based on the results from the example calculations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Y. Xing  M. Karimirad  T. Moan 《风能》2014,17(4):565-587
This paper studies the drivetrain dynamics of a 750 kW spar‐type floating wind turbine (FWT). The drivetrain studied is a high‐speed generator, one‐stage planetary, two‐stage parallel and three‐point support type. The response analysis is carried out in two steps. First, global aero‐hydro‐elastic‐servo time‐domain analyses are performed using HAWC2. The main shaft loads, which include the axial forces, shear forces and bending moments, are obtained in this integrated wind–wave response analysis. These loads are then used as inputs for the multi‐body drivetrain time‐domain analyses in SIMPACK. The investigations are largely based on comparisons of the main shaft loads and internal drivetrain responses from 1 h simulations. The tooth contact forces, bearing loads and gear deflections are the internal drivetrain response variables studied. The comparisons are based on the mean values, standard deviations and maximum values extrapolated using a 10 ? 5 up‐crossing rate. Both operational and parked conditions are considered. The investigation consists of three parts. First, the responses are compared between the FWT and its equivalent land‐based version. Second, the contributions from the main shaft loads (shear forces, axial forces and bending moments) and nacelle motions are investigated individually. Third, an improved four‐point support (4PT) system is studied and compared against the original three‐point support system for the FWT. The results show that there are general increases in the standard deviations of the main shaft loads and internal drivetrain responses in the FWT. In addition, these increases are a result of the increased main shaft loads in the FWT, especially the non‐torque loads. Last, the 4PT system, when applied to a FWT drivetrain, significantly reduces the tooth contact forces and bearing loads in the low‐speed stage, but this result comes at the expense of increased main bearing radial loads. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper proposes for wind turbines (WTs) an analytical reliability method, used on other engineering systems, to compare the reliability of different turbine concepts. The main focus of the paper is to compare the reliability of geared generator and direct‐drive concept WTs. Modification methods are also recommended for improving the availability of WTs and geared generator concept incorporating doubly fed induction generator. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a comparison of three variable‐speed wind turbine simulators used for a 2 MW wind turbine short‐term transient behaviour study during a symmetrical network disturbance. The simulator with doubly fed induction generator (DFIG) analytical model, the simulator with a finite element method (FEM) DFIG model and the wind turbine simulator with an analytical model of DFIG are compared. The comparison of the simulation results shows the influence of the different modelling approaches on the short‐term transient simulation accuracy. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号