首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas hold-up and mass transfer were examined in a column with and without a draft tube. It was found that the introduction of a draft tube increases the gas hold-up but decreases the volumetric mass transfer coefficient in Newtonian fluid systems. For non-Newtonian fluid systems, both parameters were increased by the presence of the draft tube. Empirical correlations are proposed for the gas hold-up and the volumetric mass transfer coefficient in the bubble column with Newtonian and non-Newtonian fluid systems. The correlations are in general agreement with the data in this work and in the literature. They should be useful for design and scale-up purposes. It was also found that introduction of an ancillary impeller improves the mass transfer in non-Newtonian fluids due to the break-up of large bubbles.  相似文献   

2.
The effects of solids loading on gas hold-up and oxygen transfer in external-loop airlift bioreactors with non-Newtonian fermentation media are discussed. Experiments were performed in two model external-loop airlift bioreactors with aqueous solutions of carboxymethyl cellulose (CMC) and xanthan gum representing non-Newtonian flows. Low-density plastic particles of 1030 and 1300 kg m−3 were used and the solids loading was varied in the range 0–20% (v/v). For the inelastic non-Newtonian CMC aqueous solutions, the presence of low-density solid particles slightly increased the riser gas hold-up, ϕgr, but decreased the volumetric mass transfer coefficient, kLa. On the other hand, ϕgr decreased but kLa increased with solids loading in the viscoelastic non-Newtonian xanthan gum aqueous solution. The extent of these effects depended on non-Newtonian flow behavior. Theoretical models of riser gas hold-up and volumetric mass transfer coefficient have been developed. The capability of the proposed models was examined using the present experimental data obtained in the model external-loop airlift bioreactors and the available data in the literature. The data were successfully correlated by the proposed correlations except the results for kLa coefficient in the xanthan gum solution.  相似文献   

3.
It is common to empirically correlate volumetric mass transfer coefficient kLa for predicting gas–liquid mass transfer in industrial applications, and the investigation of single bubble mass transfer is crucial for a detailed understanding of mass transfer mechanism. In this work, experiments, models and simulations based on the experimental results were highlighted to elucidate the mass transfer between single bubbles and ambient liquid. The experimental setups, measurement methods, the mass transfer of single bubbles in the Newtonian and the non-Newtonian liquid, models derived from the concept of eddy diffusion, the extension of Whitman's, Higbie's and Danckwerts' models, or dimensionless numbers, and simulation methods on turbulence, gas–liquid partition methods and mass transfer source term determination are introduced and commented on. Although people have a great knowledge on mass transfer between single bubbles and ambient liquid in single conditions, it is still insufficient when facing complex liquid conditions or some phenomena such as turbulence, contamination or non-Newtonian behavior. Additional studies on single bubbles are required for experiments and models in various liquid conditions in future.  相似文献   

4.
A prediction method for calculating the volumetric mass transfer coefficient, kLa, in gas-liquid sparged stirred tanks is proposed. A theoretical equation based on Hibie's penetration theory and the isotropic turbulence theory of Kolmogoroff is used for kL determination. The values of the interfacial area have been calculated from a hold-up theoretical equation and the mean size of the gas bubble. Both Ostwald-De Waele and Casson models are used to describe the rheological properties of the fluid. The model predicts the mass transfer coefficient and the interfacial area values in stirred tank reactors, analysing the influence of different variables. The values of the volumetric mass transfer coefficient can be calculated for different geometries of the reactor, different physicochemical properties of the liquid and under different operational conditions. The capability of prediction has been examined using experimental data available in the literature for Newtonian and non-Newtonian fluids, for very different vessel sizes, different numbers and types of stirrers and a wide range of operational conditions, with very good results.  相似文献   

5.
Slurry bubble columns are widely used in biotechnology. Therefore, the effects of solid particles on fluidization characteristics, gas hold-up and volumetric liquid-side mass transfer coefficient were measured in a slurry bubble column (i.d. 0.14 m). The density and diameter of the suspended particles were similar to those applied in biotechnology with immobilized bacteria. Based on models of turbulence and of liquid circulation induced by rising gas bubbles, equations for critical gas velocity, gas hold-up and volumetric liquid-side mass transfer coefficient were obtained by dimensional analysis.  相似文献   

6.
The influence of impeller structure on the mass transfer characteristics was studied with the steady-state method for gas-liquid volumetric mass transfer coefficient (k L a). The single-impeller configurations included eight impeller types (three radial flow impellers, four axial flow impellers and one mixed flow impeller), and the doubleimpeller included three configurations (RT+RT, RT+WH D , WH D +WH D ). For single-impeller, the gas-liquid mass transfer rates of radial flow impellers were better than those of axial flow impellers under the same rotation speed and gas flow rate. The mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) of radial flow impellers were also better than that of axial flow impellers. With the same kLa value under a certain gas flow rate, the local bubble size distribution between radial flow impeller and axial flow impeller was similar. As for double impellers, RT+RT provided the highest mass transfer rate under certain rotation speed and gas flow rate, while WH D +WH D gave the highest values of gas-liquid mass transfer coefficient with the same power consumption.  相似文献   

7.
Mean relative gas hold up, slip velocity, bubble size distribution, and volumetric mass transfer coefficient of oxygen were measured in sparged columns of highly viscous non-Newtonian fluids (CMC solutions) as a function of the gas flow rate, and CMC concentration (fluid consistency index k, and flow behaviour index n).By comparison of the measured bubble swarm velocities with those calculated by relations for single bubbles the bubble swarm behaviour was investigated. It could be shown that small bubbles in swarm have higher rising velocities than single bubbles, expecially in highly viscous media. Large single bubbles rise with high velocity due to the change of their shape caused by the swarm of the smaller bubbles. No large bubbles with spherical cap shape could be observed. The volumetric mass transfer coefficient decreases rapidly with increasing CMC-concentration.A comparison of the volumetric mass transfer coefficients with those measured in mechanically agitated vessels indicates, that the performance of sparged columns is comparable with the one of agitated vessels. Because of their lower energy requirement sparged columns are more economical than mechanically agitated vessels. It is possible to improve the performance of sparged columns by the redispersion of large bubbles in a multistage equipment.  相似文献   

8.
The influence of viscoelasticity on gas hold-up and the volumetric mass transfer coefficient in a bubble column is discussed and examined experimentally. It was found that the gas hold-up increased due to an increase in the number of entrapped very small bubbles formed because of the elasticity of the liquid. On the other hand, a decrease in volumetric mass transfer coefficient due to the fluid elasticity was observed. Qualitative effects of an antifoam agent and a draft tube on the performance of the bubble column with viscoelastic fluids were also examined.  相似文献   

9.
Gas-liquid reactors . The gas hold-up in bubble columns increases in proportion to the gas flux density in the homogeneous flow regime and rises less than proportionally in the heterogeneous flow regime. Both the gas and the liquid axial dispersion coefficient increase with gas flow. Gas phase dispersion becomes more intensive with increasing liquid viscosity, while liquid dispersion drops slightly. Experimental results for mass transfer in low viscosity liquids show that the two-range turbulence model best fits experimental data. When aerating highly viscous Newtonian and non-Newtonian liquids, mass transfer in the liquid phase is well described by known relations valid for very low bubble-Reynolds number and very high Schmidt number.  相似文献   

10.
It is common to empirically correlate volumetric mass transfer coefficient kLa for predicting gas-liquid mass transfer in industrial applications, and the investigation of single bubble mass transfer is crucial for a detailed understanding of mass transfer mechanism. In this work, experiments, models and simulations based on the experimental results were highlighted to elucidate the mass transfer between single bubbles and ambient liquid. The experimental setups, measurement methods, the mass transfer of single bubbles in the Newtonian and the nonNewtonian liquid, models derived from the concept of eddy diffusion, the extension of Whitman's, Higbie's and Danckwerts' models, or dimensionless numbers, and simulation methods on turbulence, gas-liquid partition methods and mass transfer source term determination are introduced and commented on. Although people have a great knowledge on mass transfer between single bubbles and ambient liquid in single conditions, it is still insufficient when facing complex liquid conditions or some phenomena such as turbulence, contamination or non-Newtonian behavior. Additional studies on single bubbles are required for experiments and models in various liquid conditions in future.  相似文献   

11.
We assembled a set of models that allows investigation of local variables that are difficult to measure, validation of mechanistic physical models, and comparison of different numerical solutions. Population balances (PB) for bubbles were combined with local flow modelling in order to investigate G–L mass transfer in an air–water system. Performance of three different impeller geometries was investigated: Rushton (RT), Phasejet (PJ) and Combijet (CJ). Simulations were compared against experimental mixing intensity, gas hold-up, vessel-averaged volumetric mass transfer rates (kLa), and local bubble size distributions (BSDs).The simulations qualitatively predict kLa's with different impellers at the fully dispersed flow region and gave new insight on how kLa is formed and distributed in the stirred vessels. The used bubble breakage and coalescence models are able to describe both air–water and viscous non-Newtonian G–L mass transfer. Difference between experimental mass transfer rates of the three impellers was within experimental error, even trough the flow patterns, gas distribution, and local BSDs differ considerably. The population balance for bubbles was modelled in two different ways, with multiple size groups (MUSIGs) and with the bubble number density (BND) approach. MUSIG calculations took over twice as much computational time than BND, but there was little difference in the results. The Rushton turbine kLa was described with best accuracy, which is not surprising since most phenomenological models are fitted based on RT experiments. We suggest that these models should be validated over a wider range of vessel geometries and operating conditions.  相似文献   

12.
The effects of three types of surface active agents (containing SDS, HCTBr and Tween 40) with various concentrations (0–5 ppm) on the hydrodynamic and oxygen mass transfer characteristics in a split-cylinder airlift bioreactor with and without packing were investigated. It was observed that in the surfactant solutions, surface tension of the liquid decreased and smaller bubbles were produced in comparison with pure water. So, surfactants presence strongly enhanced mixing time and gas hold-up although oxygen mass transfer coefficient and the liquid circulation velocity reduced. Furthermore, the packing installation enhanced the overall gas–liquid volumetric mass transfer coefficient by increasing flow turbulency and Reynolds number compared to an unpacked column. The packing increased gas hold-up and decreased bubbles size and liquid circulation velocity.  相似文献   

13.
1 INTRODUCTIONLiquid jet loop reactor(JLR)may be upflow(U-JLR)or downflow reactors(D-JLR)in design.The major differences between the two are the location of the nozzle andthe direction of the fluid flow.A large number of investigations on U-JLR havebeen published,but D-JLR with nozzles positioned on the top portion of the reac-tor was not much studied until recently.Up to now,only a few experimentalstudies on the hydrodynamics and mass transfer of D-JLR have been carried out[1-4].  相似文献   

14.
This study investigates the adoption of floating contactors to promote the rate of oxygen transfer from non-uniform air bubbles to liquid in a bubble column with continuous operation. The volumetric oxygen transfer coefficient and axial dispersion coefficient of a liquid phase have been analyzed based on the axial dispersion model. Attention was focused on the effects of the volume fraction of the floating contactors on the volumetric oxygen transfer coefficient, axial dispersion coefficient of a liquid phase, and gas phase hold-up in the bubble column. The results have shown that the volumetric oxygen transfer coefficient and gas phase hold-up can increase by up to 25% and 13%, respectively, while the axial dispersion coefficient of a liquid phase decreases by up to 30% by adding floating contactors in the column.  相似文献   

15.
The effects of particle concentration and size on hydrodynamics and mass transport in an air–water slurry bubble column were experimentally studied. When the particle concentration αs increased from 0% to 20%, the averaged gas holdup decreased by ~30%, gas holdup of small bubbles and gas–liquid volumetric mass transfer coefficient decreased by up to 50%, while the gas holdup of large bubbles increased slightly. The overall effect of particle size was insignificant. A liquid turbulence attenuation model which could quantitatively describe the effects of particle concentration and size was first proposed. Semi-empirical correlations were obtained based on extensive experimental data in a wide range of operating conditions and corrected liquid properties. The gas holdup and mass transfer coefficient calculated by the correlations agreed with the experimental data from both two-phase and three-phase bubble columns, with a maximum error <25%.  相似文献   

16.
Experimental measurements of the gas hold-up and volumetric mass transfer coefficient have been made for baffle columns (BCs) reacting various foaming liquids under mechanical and chemical foam control. The gas hold-up and the volumetric mass transfer coefficient in a mechanical foam-control system (BCs with rating-disk mechanical foam-breakers) were larger than those in a chemical foam-control system (BCs with an antifoam agent added). Correlations for the gas hold-up and the volumetric mass transfer coefficient in BCs under foam control are presented. Comparison of the volumetric mass transfer coefficient between the mechanical foam-control system and the chemical foam-control system in terms of the specific power input also demonstrated higher mass transfer performance and saving power requirements for the mechanical foam-control system.  相似文献   

17.
很多废水处理装置涉及非牛顿型流体中的多相流动和传质问题,研究其中的气液传质过程有助于实现装置的优化设计和高效节能运行。以鼓泡反应器内清水和不同质量分数的羧甲基纤维素钠(CMC)水溶液为实验对象,分别研究气相表观气速和液相流变特性对气泡尺寸分布、全局气含率和体积氧传质系数的影响。实验结果表明,液相的流变特性对其传质特性参数均有较大影响。与清水相比,CMC水溶液中气泡平均直径和分布范围更大;清水和CMC水溶液的全局气含率均随表观气速的增加而增大;CMC水溶液的体积氧传质系数随CMC水溶液质量分数的增加而减小。基于实验研究,得出修正的体积氧传质系数公式和适用于幂律型非牛顿流体流动体系氧传递过程的无量纲关联式,可很好地实现非牛顿流体流动的废水处理装置中气液传质参数的计算。  相似文献   

18.
The hydrodynamics and mass transfer characteristics of a venturi/bubble column combination were studied at high liquid superficial velocities of up to 0.35 m/s. The gas hold-up was increased by 50% to 150% and the overall volumetric mass transfer coefficient was tripled when the venturi was used as “gas distributor” instead of a porous distributor. A correlation of the overall volumetric mass transfer coefficient (KLa) with the gas hold-up, valid for gas hold-ups as high as 0.3, was proposed for the cylindrical bubble column section. The energy consumption per mole of oxygen transferred was lower than with most distributors and the oxygen transfer rate per unit of reactor volume was higher than in a bubble column with a porous distributor. The venturi/bubble column combination is a compact and efficient system which does not have the operating problems of systems which require internals.  相似文献   

19.
在-气升式内环流反应器中试验考察了非牛顿流体羧甲基纤维素钠(CMC)中的气泡聚并现象以及表面活性物质对液相体积传质系数的影响。结果表明,非牛顿流体中气-液传质效率随黏度的增加而降低,其原因是黏度增加使Taylor泡的尾流趋于稳定,降低了液相扰动,气泡间易聚并,从而气-液传质效率低。向非牛顿流体中添加醇类物质会影响气-液传质行为,对于聚合物含量低的流体,添加微量醇可以促进气-液传质,聚合物含量高的非牛顿流体,微量醇的加入反而不利于气-液间传质过程。非牛顿流体在ILAR上升管中的气含率随着黏度的增加变化不大,而下降管中的气含率有所提高。  相似文献   

20.
Mass transfer from Taylor bubbles rising in single capillaries   总被引:1,自引:0,他引:1  
Gas-liquid mass transfer from Taylor bubbles rising in 1, 2 and 3 mm diameter capillaries of circular and square cross-sections was investigated for air-water system. The liquid-phase volumetric mass transfer coefficient kLa was obtained from experimental oxygen absorption dynamics. The experimental kLa values are in good agreement with the model developed by van Baten and Krishna (2004. Chemical Engineering Science 59, 2535-2545), with the additional assumption that the dominant mass transfer contribution is to the film surrounding the bubble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号