共查询到18条相似文献,搜索用时 78 毫秒
1.
蚁群算法作为一种新的生物进化算法,具有并行、正反馈和启发式搜索等特点,但它与其它进化算法同样存在易于陷入局部最小点等缺陷。为了克服这些缺陷,介绍了一种改进的蚁群算法来求解旅行Agent问题,解决移动Agent为完成用户指定任务,在不同主机间移动时的迁移策略问题。实验结果表明了算法的可行性。 相似文献
2.
利用蚁群算法来求解TAP问题是解决移动Agent迁移策略的一种有效途径。旅行Agent问题是复杂的组合优化问题,蚁群算法作为一种新的生物进化算法,具有并行、正反馈和启发式搜索等特点,适合求解NP难问题。在蚁群算法的基础上,提出分泌多种信息素的改进蚁群算法来求解旅行Agent问题,动态反应了节点服务能力和网络负载的变化,使迁移更具有灵活性。实验结果表明了该文算法的可行性。 相似文献
3.
蚁群算法是优化领域中新出现的一种仿生进化算法,该算法具有并行、正反馈和启发式搜索等特点,但搜索时间长、易陷入局部最优解是其突出缺点。旅行Agent问题是一类复杂的组合优化问题,目的在于解决移动Agent 为完成用户指定任务,在不同主机间移动时的迁移策略问题。在蚁群算法的基础上,引入变异运算,并且对蚁群算法的全局和局部更新规则进行改进,引入自适应的信息素挥发系数来提高收敛速度和算法的全局最优解搜索能力,从而使得移动Agent在移动时以最优的效率和最短的时间来完成迁移。仿真结果表明,改进的算法在解的性能和收敛速度上均优于相关算法。 相似文献
4.
5.
针对现有的蚁群算法在求解旅行Agent问题中所存在的全局最优解的收敛速度不强和一致性欠佳等问题,在蚁群算法的基础上,利用算法的迭代次数来动态自适应地修改选择路径上的信息素的更新规则和信息素的挥发系数,从而使Agent在路径选择中这两方面的能力得到了提高。实验结果表明,相比现有的解决旅行Agent问题的蚁群算法,该算法在求解全局最优解的收敛速度和一致性方面具有更强的优势。 相似文献
6.
针对蚁群算法在解决旅行Agent问题(TAP)时存在搜索时间长和易陷入局部最优的缺点,提出一种将蜂群和蚁群算法相结合的新型算法。通过修改状态转移概率和信息素更新规则使算法更符合TAP问题的特征,引入跟随蜂思想使蚂蚁尽快搜索到问题最优解,加入阻塞度因子以避免算法陷入局部最优。仿真结果表明,该算法在解决旅行Agent问题时有效避免了蚁群算法的上述缺点,且在解的性能上优于相关算法。 相似文献
7.
本文在蚁群系统的基础上,提出一种改进型蚁群算法.蚂蚁之间通过外激素进行间接交流从而达到合作的目的,在利用已有信息与探索新解并重的策略指导下给出所求解问题的最优解,并且由于遗传算子的引入及全局更新规则的修正,不再易于陷入局部极小.本文采用改进型蚁群算法求解复杂的组合优化问题-旅行Agent问题,取得了满意的效果.实验结果表明,改进型蚁群算法具有鲁棒性强、自适应、并行化、正反馈的优点. 相似文献
8.
旅行商问题作为组合优化研究中最具挑战的问题之一, 自被提出以来就引起了学术界的广泛关注并提出了大量的方法来解决它. 蚁群算法是求解复杂组合优化问题的一种启发式仿生进化算法, 是求解旅行商问题的有效手段. 本文分别介绍蚁群算法中几个有代表性的算法, 综述了蚁群算法的改进、融合和应用的文献研究进展, 以评价近年来不同版本的蚁群算法为解决旅行商问题的发展和研究成果, 并针对改进蚁群算法结构框架、算法参数的设置及优化、信息素优化和混合算法等方面, 对现被提出的改进算法进行了分类综述. 对蚁群算法在未来对旅行商问题及其他不同领域的研究内容和研究热点的进一步发展提供了展望和依据. 相似文献
9.
针对蚁群算法搜索时间长、易陷于局部最优解的缺点,提出一种自适应的调整信息素挥发因子的改进策略。通过解决旅行商问题,证明该改进算法具有优良的寻优能力,提高了算法的全局性。 相似文献
10.
蚁群算法在移动Agent迁移中的应用研究 总被引:2,自引:2,他引:2
移动Agent提供了一种全新的分布计算范型.移动Agent技术给分布式系统的设计、实现和维护都带来了新的活力.旅行Agent问题是一类复杂的组合优化问题,目的在于解决移动Agent在不同主机间移动时如何根据移动Agent的任务和其他约束条件来规划最优的迁移路线.蚁群算法作为一种新的生物进化算法,具有并行、正反馈和启发式搜索等特点,是一种解决旅行Agent问题的有效手段,受到了广泛的关注,但它与其他进化算法一样存在易陷入局部最小的缺点.在蚁群算法的基础上,通过修改它的信息素轨迹更新规则,引入自适应的信息素挥发系数来提高收敛速度和算法的全局最优解搜索能力,从而使得移动Agent在移动时以最优的效率和最短的时间来完成迁移.仿真结果表明,改进的算法在解的性能和收敛速度上均优于相关算法. 相似文献
11.
已有求解子旅行商问题的蚁群算法存在容易早熟、易于陷入局部最优的问题。为此,提出一种改进的蚁群算法。将拥挤因子嵌入到蚁群算法的状态转移和信息素更新过程中,增强全局搜索能力,设计邻域搜索技术和局部变异技术,以提高解的质量和加快收敛速度。实验结果表明,该算法的求解质量和稳定性较好。 相似文献
12.
13.
蚁群算法在K-TSP问题中的应用 总被引:7,自引:0,他引:7
针对K-TSP(K—person Traveling Salesman Problem)问题,该文提出了一种利用蚁群算法求解该问题的新思路。该算法采用k只蚂蚁共同构造问题的一个解,并通过多组(每组k只)蚂蚁相互协作最终达到搜索最优解的目的。实验结果显示,该算法行之有效,是一种求解K-TSP问题的有效算法。 相似文献
14.
针对光网络故障恢复资源利用的优化问题,采用改进的蜂群算法(IABC)来求解专有路径保护设计优化问题。由于采蜜机理的蜂群算法全局寻优能力较弱,引入禁忌表机制,增强算法搜索全局最优解的能力,并改进蜂群算法的交叉算子,增强算法的收敛速度。通过实验仿真。结果表明与传统的ABC算法相比,IABC能算法大大地提高计算效率,针对较复杂网络资源优化的NP问题提供有效的可行性实施方法。 相似文献
15.
针对蚁群优化算法在进行全局最优解搜索时容易陷入局部最优解和收敛速度缓慢等缺陷,提出了一种有效求解全局最优解搜索问题的重叠蚁群优化算法。该算法通过设置多个重叠的蚁群系统,并对每一个蚁群初始化不同的参数,之后在蚁群之间进行信息素的动态学习,增强了不同蚁群对最优解的开采能力,避免了算法出现早熟现象。仿真实验结果表明,重叠蚁群优化算法在避免陷入局部最优解方面具有良好的效果,是一种提高蚁群算法性能的有效的改进算法。 相似文献
16.
传统的蚁群算法具有收敛性好、鲁棒性强等优点,但在解决旅行商(TSP)问题方面存在收敛时间长,容易出现停滞等问题;为了提高传统蚁群算法的解的质量,本文提出了基于遗传-模拟退火的蚁群算法(G-SAACO),将遗传算法和模拟退火算法引入蚁群算法中;其方法是在传统蚁群算法中引入遗传算法的变异与交叉策略来得到候选解,增加解的多样性;同时引进模拟退火算法机制,使得在高温时以较高概率选择候选集中比较差的解加入最新集,温度控制上加入了回火机制,进一步提高解的质量;为了检验改进的蚁群算法,随机选用了TSPLIB中的部分城市进行仿真,结果与传统蚁群算法、模拟退火蚁群算法、遗传蚁群算法相比,算法具有较强的发现较好解的能力,同时增强了平均值的稳定性。 相似文献
17.
求解旅行商问题的混合量子蚁群算法 总被引:1,自引:0,他引:1
针对蚁群算法求解旅行商问题时易陷入局部最优和收敛速度慢的问题,提出一种新的求解旅行商问题的混合量子蚁群算法。该算法采用量子比特的概率幅对各路径上的信息素进行编码,采用量子旋转门及蚂蚁走过的路径对信息素进行更新,设计一种新的变换邻域准则。基于TSPLIB的仿真实验结果表明了该算法具有较快的收敛速度和求解精度。 相似文献
18.
米永强 《数字社区&智能家居》2014,(3):1505-1507
蚁群算法是一种求解组合优化问题较好的方法。在蚁群算法的基本原理基础上,以旅行商问题为例,介绍了该算法求解TSP的数学模型及具体步骤,并通过仿真实验与粒子群优化算法等方法比较分析,表明了该算法在求解组合优化问题方面具有良好的性能。 相似文献