首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two- (2D) and three-dimensional (3D) growth of nanostructured Bi2Te3 films was performed on 4° tilt (100) GaAs substrates using a metalorganic chemical vapor deposition system. To obtain 3D Bi2Te3 crystallites embedded in 2D planar film, we alternately changed the gas flow rate in the reactor. By repeating two steps, 3D Bi2Te3 crystallites embedded in 2D planar Bi2Te3 film were obtained. The thermoelectric properties in terms of the thermal conductivity, electrical conductivity, and Seebeck coefficient were investigated at room temperature. The thermal conductivities of the nanostructured Bi2Te3 films were from 0.63?W/(m?K) to 0.94?W/(m?K) at room temperature, which are low compared with that of film without nanostructure [1.62?W/(m?K)]. The thermal conductivity of the film was effectively decreased with the decrease of size and increase of density of 3D crystallites. The results of this study open up a new method to fabricate nanostructured thermoelectric films with high thermoelectric figure of merit.  相似文献   

2.
Sb2Te3 and Bi2Te3 thin films were grown on SiO2 and BaF2 substrates at room temperature using molecular beam epitaxy. Metallic layers with thicknesses of 0.2?nm were alternately deposited at room temperature, and the films were subsequently annealed at 250°C for 2?h. x-Ray diffraction and energy-filtered transmission electron microscopy (TEM) combined with high-accuracy energy-dispersive x-ray spectrometry revealed stoichiometric films, grain sizes of less than 500?nm, and a texture. High-quality in-plane thermoelectric properties were obtained for Sb2Te3 films at room temperature, i.e., low charge carrier density (2.6?×?1019?cm?3), large thermopower (130???V?K?1), large charge carrier mobility (402?cm2?V?1?s?1), and resulting large power factor (29???W?cm?1?K?2). Bi2Te3 films also showed low charge carrier density (2.7?×?1019?cm?3), moderate thermopower (?153???V?K?1), but very low charge carrier mobility (80?cm2?V?1?s?1), yielding low power factor (8???W?cm?1?K?2). The low mobilities were attributed to Bi-rich grain boundary phases identified by analytical energy-filtered TEM.  相似文献   

3.
The surface band tuning of the topological insulator Bi2Te3 by gas adsorption is investigated on the basis of ab?initio calculations. It is shown that, with the increase of Te vacancies, the topologically non-trivial surface state which originates from the second quintuple layer coexists with the topologically trivial surface. Molecular dynamics simulation reveals that O2 and NO2 easily occupy the Te vacancy sites and further bind to the Bi atoms from the second atomic layer. Moreover, the surface band with the Dirac cone is observed. Our results suggest that the topological surface state can be effectively regulated by NO2 and O2 adsorption.  相似文献   

4.
A series of thermoelectric nanocomposite samples were prepared by integrating Bi2Se3 nanoparticles into a bulk Bi2Te3 matrix. Primarily, spherical Bi2Se3 nanoparticles with diameter of ~30 nm were synthesized by combining bismuth acetate with elemental Te in oleic acid solution. Bi2Te3-based nanocomposite samples were prepared by consolidating the appropriate quantity of Bi2Se3 nanoparticles with the starting elements (Bi and Te) using typical solid-state synthetic reactions. The microstructure and composition of the Bi2Te3-based nanocomposites, as well as the effects of the Bi2Se3 nanoparticles on their thermoelectric properties, are investigated. Transmission electron microscopy observation of the Bi2Te3-based nanocomposites reveals two types of interface between the constituent materials, i.e., coherent and incoherent, depending on the Bi2Se3 concentration. The Bi2Se3 nanoparticles in the Bi2Te3 matrix act as scattering centers for a wider range of phonon frequencies, thereby reducing the thermal conductivity. As a result, the maximum ZT value of 0.75 is obtained for the Bi2Te3 nanocomposite with 10 wt.% Bi2Se3 nanoparticles at room temperature. It is clear that the reduction in the thermal conductivity plays a central role in the enhancement of the ZT value.  相似文献   

5.
The effect of dimensionality and nanostructure on thermoelectric properties in Bi2Te3-based nanomaterials is summarized. Stoichiometric, single-crystalline Bi2Te3 nanowires were prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix, yielding transport in the basal plane. Polycrystalline, textured Sb2Te3 and Bi2Te3 thin films were grown at room temperature using molecular beam epitaxy and subsequently annealed at 250°C. Sb2Te3 films revealed low charge carrier density of 2.6?×?1019?cm?3, large thermopower of 130???V?K?1, and large charge carrier mobility of 402?cm2?V?1?s?1. Bi2(Te0.91Se0.09)3 and (Bi0.26Sb0.74)2Te3 nanostructured bulk samples were prepared from as-cast materials by ball milling and subsequent spark plasma sintering, yielding grain sizes of 50?nm and thermal diffusivities reduced by 60%. Structure, chemical composition, as well as electronic and phononic excitations were investigated by x-ray and electron diffraction, nuclear resonance scattering, and analytical energy-filtered transmission electron microscopy. Ab?initio calculations yielded point defect energies, excitation spectra, and band structure. Mechanisms limiting the thermoelectric figure of merit ZT for Bi2Te3 nanomaterials are discussed.  相似文献   

6.
The effect of multiwalled carbon nanotubes (MWNTs) on the electrochemical behavior of the Bi-Te binary system in nitric acid baths was investigated by means of cyclic voltammetry and electrochemical impedance spectroscopy. Based on the results, MWNT/Bi2Te3 composite thermoelectric films were prepared by potentiostatic electrodeposition at room temperature. The morphology, composition, and structure of the MWNT/Bi2Te3 composite films were analyzed by environmental scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. The results show that addition of MWNTs to the electrolyte did not change the electrochemical reduction mechanisms of Bi3+, HTeO 2 + or their mixture, but the reduction processes of Bi3+, HTeO 2 + , and their mixture become easier. MWNT/Bi2Te3 composite thermoelectric films can be obtained by potentiostatic electrodeposition at a wide range of potentials with subsequent annealing. The MWNTs in the films act as nucleation sites for Bi2Te3 compound and thereby elevate the film deposition rate. The content of Bi element and MWNTs in the films increased as the potential was shifted negatively. In addition, the MWNTs can enhance the crystallization of Bi2Te3 film.  相似文献   

7.
The impact of contact resistance on thermoelectric (TE) device performance grows more significant as devices are scaled down. To improve and understand the effects of contact resistance on bulk TE device performance, a reliable experimental measurement method is needed. There are many popular methods to extract contact resistance, but they are only well suited for measuring metal contacts on thin films and do not necessarily translate to measuring contact resistance on bulk TE materials. The authors present a measurement technique that precisely measures contact resistance on bulk TE materials by making and testing stacks of bulk, metal-coated TE wafers using TE industry-standard processes. An equation that uses the Z of the stacked device to extract the contact resistance is used to reduce the sensitivity to resistivity variations of the TE material. Another advantage of this technique is that it exploits realistic TE device manufacturing techniques and results in an almost device-like structure. The lowest contact resistivity measured was 1.1 × 10?6 Ω cm2 and 1.3 × 10?6 Ω cm2 for n- and p-type materials, respectively using a newly developed process at 300 K. The uncertainty in the contact resistivity values for each sample was 10% to 20%, which is quite good for measurements in the 10?6 Ω cm2 range.  相似文献   

8.
The thermoelectric properties of I-doped Bi2Te3 films grown by metal-organic chemical vapor deposition have been studied. I-doped epitaxial (00l) Bi2Te3 films were successfully grown on 4° tilted GaAs (001) substrates at 360 °C. I concentration in the Bi2Te3 films was easily controlled by the variation in a flow rate of H2 carrier gas for the delivery of an isopropyliodide precursor. As I ions in the as-grown Bi2Te3 films were not fully activated, they did not influence the carrier concentration and thermoelectric properties. However, a post-annealing process at 400 °C activated I ions as a donor, accompanied with an increase in the carrier concentration. Interestingly, the I-doped Bi2Te3 films after the post-annealing process also exhibited enhancement of the Seebeck coefficient at the same electron concentration compared to un-doped Bi2Te3 films. Through doping I ions into Bi2Te3, the thermopower was also enhanced in Bi2Te3, and a high power factor of 5 × 10?3 W K?2 m?1 was achieved.  相似文献   

9.
In this work, we present in-situ monitoring of the growth of bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thin films as well as Bi2 Te3-Sb2Te3 superlattice using a spectroscopic ellipsometer (SE). Bi2Te3 and Sb2 Te3 films were grown by metalorganic chemical vapor deposition (MOCVD) at 350 C. A44-wavelength ellipsometer with spectral range from 404 nm to 740 nm was used in this work. The optical constants of Bi2 Te3 and Sb2Te3 at growth temperature were determined by fitting a model to the extracted in-situ SE data of optically thick Bi2 Te3 and Sb2 Te3 films. Compared to the optical constants of Bi2 Te3 and Sb2 Te3 at room temperature, significant temperature dependence was observed. Using their optical constants at growth temperature, the in-situ growth of Bi2 Te3 and Sb2 Te3 thin films were modeled and excellent fit between the experimental data and data generated from the best-fit model was obtained. In-situ growth of different Bi2 Te3-Sb2 Te3 superlattices was also monitored and modeled. The growth of Bi2 Te3 and Sb2 Te3 layers can be seen clearly in in-situ SE data. Modeling of in-situ superlattice growth shows perfect superlattice growth with an abrupt interface between the two constituent films.  相似文献   

10.
11.
Bi2Te3薄膜是室温下热电性能最好的热电材料,利用磁控溅射在长有一薄层SiO2的n型硅样品上制备Bi/Te多层复合薄膜,经后续退火处理生成Bi2Te3。通过分析Bi2Te3薄膜的生长和退火工艺,探讨Bi/Te中Te的原子数分数对薄膜热电性能的影响。采用XRD和SEM对薄膜的结构、形貌和成分进行分析,并测量不同条件下的Seebeck系数。薄膜Seebeck系数均为负数,表明所制备样品是n型半导体薄膜,且最大值达到-76.81μV.K-1;电阻率ρ随Te的原子数分数增大而增大,其趋势先缓慢后迅速。Bi2Te3薄膜的热电性能良好,Te的原子数分数是60.52%时,功率因子最大,为1.765×10-4W.K-2.m-1。  相似文献   

12.
Combining first-principles density functional theory and semiclassical Boltzmann transport, the anisotropic Lorenz function was studied for thermoelectric Bi2Te3/Sb2Te3 superlattices and their bulk constituents. It was found that, already for the bulk materials Bi2Te3 and Sb2Te3, the Lorenz function is not a clear function of charge carrier concentration and temperature. For electron-doped Bi2Te3/Sb2Te3 superlattices, large oscillatory deviations of the Lorenz function from the metallic limit were found even at high charge carrier concentrations. The latter can be referred to quantum well effects, which occur at distinct superlattice periods.  相似文献   

13.
14.
15.
Semiconductors - For p-Bi2Te3 crystals grown by the Czochralski method, the temperature dependences of the conductivity, Hall coefficient, thermoelectric power (α), and transverse...  相似文献   

16.
In this work, we present the optical constants of bismuth telluride (Bi2Te3), and antimony telluride (Sb2Te3) determined using spectroscopic ellipsometry (SE). The spectral range of the optical constants is from 404 nm to 740 nm. Bi2Te3 and Sb2Te3 films with different thicknesses were grown by metalorganic chemical vapor deposition (MOCVD). Multiple sample analysis (MSA) technique was employed in order to eliminate the parameter correlation in the SE data analysis caused by the presence of the overalyer on top of Bi2Te3 and Sb2Te3 films. Optical constants and thicknesses for both Bi2Te3 and Sb2Te3 overlayers were also determined. Independent Bi2Te3 and Sb2Te3 samples were used to check the results obtained. In addition, SE analysis was performed on two Sb2Te3 samples after being etched in diluted NH4OH solution in order to characterize the overlayer and confirm the reliability of the results.  相似文献   

17.
V2VI3 compounds and solid solutions based on them are known to be the best low-temperature thermoelectric (TE) materials. The predicted possibility of enhancement of the TE figure of merit in two-dimensional (2D) structures has stimulated studies of the properties of these materials in the thin-film state. The goal of the present work is to study the dependences of the Seebeck coefficient S, electrical conductivity σ, Hall coefficient R H, charge carrier mobility μ H, and TE power factor P = S 2 σ of Bi2Te3 thin films on the composition of the initial bulk material used for preparing them. Thin films with thickness d = 200 nm to 250 nm were grown by thermal evaporation in vacuum of stoichiometric Bi2Te3 crystals (60.0 at.% Te) and of crystals with 62.8 at.% Te onto glass substrates at temperatures T S of 320 K to 500 K. It was established that the conductivity type of the initial material is reproduced in films fairly well. For both materials, an increase in T S leads to an increase in the thin-film structural perfection, better correspondence between the film composition and that of the initial material, and increase in S, R H, μ H, σ, and P. The room-temperature maximum values of P for the films grown from crystals with 60.0 at.% and 62.8 at.% Te are P = 7.5 × 10?4 W/K2 m and 35 × 10?4 W/K2 m, respectively. Thus, by using Bi2Te3 crystals with different stoichiometry as initial materials, one can control the conductivity type and TE parameters of the films, applying a simple and low-cost method of thermal evaporation from a single source.  相似文献   

18.
Kulbachinskii  V. A.  Kytin  V. G.  Zinoviev  D. A.  Maslov  N. V.  Singha  P.  Das  S.  Banerjee  A. 《Semiconductors》2019,53(5):638-640
Semiconductors - Antimony-telluride-based nanocomposite samples containing different weight fractions of graphite (Sb2Te3 + x% graphite, where x = 0.0, 0.5, 1.0, and 2.5%) are synthesized and...  相似文献   

19.
This study examines the thermoelectric behavior of composites containing hydrothermally processed tellurium-coated bismuth particles of various sizes. Since only a very thin layer of Bi2Te3 forms on the particle surface, the high-pressure compacted composite is still dominated by bismuth as the main ingredient (??96% Bi). Thermoelectric figure of merit ZT values are derived from measurements of thermal conductivity, electrical resistivity, and Seebeck coefficient. As expected, a ZT value almost three times higher than that of bismuth is found. This enhancement appears to be caused mainly by lowered thermal conductivity due to the significant number of grain boundaries, short phonon mean free path in the coating layers, and lattice mismatch.  相似文献   

20.
A device based on a new double-layer-leg thin-film concept has been successfully fabricated by flip-chip bonding of 242 pairs of n-type Bi2Te3 and p-type Sb2Te3 thin-film legs electrodeposited on top substrates to those processed on bottom substrates. Based on the output voltage–current curve, the internal resistance of the double-layer-leg thin-film device was measured to be 3.47 kΩ at an apparent temperature difference of 25.9 K across the device. The actual temperature difference across the thin-film legs was estimated to be 3.51 K, which is ~13% of the apparent temperature difference ΔT of 25.9 K applied across the thin-film device. The double-layer-leg thin-film device exhibited an open-circuit voltage of 0.43 V and maximum output power of 13.1 μW at an apparent temperature difference ΔT of 25.9 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号