首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using first-principles cluster calculations, we identified that Ta or W substitution for V is useful for decreasing the lattice thermal conductivity of the Fe2VAl Heusler alloy without greatly affecting the electron transport properties. It was clearly confirmed that the Fe2(V1?x Ta x )Al0.95Si0.05 (x?=?0, 0.025, 0.05), Fe2(V0.9?x Ta x Ti0.1)Al (x?=?0, 0.10, 0.20), and Fe2(V0.9?2x W x Ti0.1+x )Al (x?=?0, 0.05, 0.10) alloys indeed possessed large Seebeck coefficient regardless of the amounts of substituted elements, while their lattice thermal conductivity was effectively reduced. As a result of partial substitution of Ta for V, we succeeded in increasing the magnitude of the dimensionless figure of merit of the Heusler phase up to 0.2, which is five times as large as the Ta-free compound.  相似文献   

2.
Ternary metallic alloy Fe2VAl with a pseudogap in its energy band structure has received intensive scrutiny for potential thermoelectric applications. Due to the sharp change in the density of states profile near the Fermi level, interesting transport properties can be triggered to render possible enhancement in the overall thermoelectric performance. Previously, this full-Heusler-type alloy was partially doped with cobalt at the iron sites to produce a series of compounds with n-type conductivity. Their thermoelectric properties in the temperature range of 300?K to 850?K were reported. In this research, efforts were made to extend the investigation on (Fe1?x Co x )2VAl to the low-temperature range. Alloy samples were prepared by arc-melting and annealing. Seebeck coefficient, electrical resistivity, and thermal conductivity measurements were performed from 80?K to room temperature. The effects of cobalt doping on the material??s electronic and thermal properties are discussed.  相似文献   

3.
Power generation performance of a thermoelectric module consisting of the Heusler Fe2VAl alloy was evaluated. For construction of the module, W-doped Fe2VAl alloys were prepared using powder metallurgy process. Power generation tests of the module consisting of 18 pairs of pn junctions were conducted on a heat source of 373–673 K in vacuum. The reduction of thermal conductivity and improvement of thermoelectric figure of merit by W-doping enhanced the conversion efficiency and the output power. High output power density of 0.7 W/cm2 was obtained by virtue of the high thermoelectric power factor of the Heusler alloy. The module exhibited good durability, and the relatively high output power was maintained after temperature cycling test in air.  相似文献   

4.
Polycrystalline samples of the RuSb2Te ternary skutterudite compound were prepared by the powder metallurgy method, and the influence of various types of doping on its thermoelectric properties was studied. The phase purity of the prepared samples was checked by means of powder x-ray diffraction, and their compositions were checked by electron probe x-ray microanalysis. Hot-pressed p-type samples were characterized by measurements of electrical conductivity, Hall coefficient, Seebeck coefficient, and thermal conductivity. Various doping strategies, i.e., cation substitution (Ru0.95Fe0.05Sb2Te), anion substitution (RuSb2Sn0.1Te0.9) or partial filling of voids of the ternary skutterudite structure (Yb0.05RuSb2Te), were investigated, and the influence of the dopants on the changes of the resulting transport, thermoelectric, and thermal properties is described.  相似文献   

5.
Substituting Fe on Co sites is an effective way to produce p-type skutterudite compounds as well as to reduce the thermal conductivity of skutterudites. In this work, we investigated thermoelectric properties of Fe-substituted and Ce + Yb double-filled Ce x Yb y Fe z Co4?z Sb12 (x = y = 0.5, z = 2.0 to 3.25 nominal) skutterudite compounds by studying the Seebeck coefficient, electrical conductivity, thermal conductivity, and Hall coefficient over a broad range of temperatures. All samples were prepared by using the traditional method of melting–annealing and spark plasma sintering. The signs of the Hall coefficient and Seebeck coefficient indicate that all samples are p-type conductors. Electrical conductivity increases with increasing Fe content. The temperature dependence of electrical conductivity indicates that a transition from the extrinsic to the intrinsic regime of conduction depends on the amount of Fe substituted for Co. The temperature dependence of mobility reflects the dominance of acoustic phonon scattering at temperatures above ambient. Except for Ce0.5Yb0.5Fe3.25Co0.75Sb12, the thermal conductivity increases with increasing Fe content, reaching the maximum value of 2.23 W/m K at room temperature for Ce0.5Yb0.5Fe3CoSb12. A high power factor (27 μW/K2 cm) combined with a rather low thermal conductivity for Ce0.5Yb0.5Fe3.25Co0.75Sb12 (nominal) lead to a dimensionless figure of merit ZT = 1.0 at 750 K for this compound, one of the highest ZT values achieved in p-type skutterudite compounds prepared by the traditional method of melting–annealing and spark plasma sintering.  相似文献   

6.
We have synthesized undoped, Co-doped (up to 5%), and Se-doped (up to 4%) FeS2 materials by mechanical alloying in a planetary ball mill and investigated their thermoelectric properties from room temperature (RT) to 600 K. With decreasing particle size, the undoped FeS2 samples showed higher electrical conductivity, from 0.02 S cm?1 for particles with 70 nm grain size up to 3.1 S cm?1 for the sample with grain size of 16 nm. The Seebeck coefficient of the undoped samples showed a decrease with further grinding, from 128 μV K?1 at RT for the sample with 70-nm grains down to 101 μV K?1 for the sample with grain size of 16 nm. The thermal conductivity of the 16-nm undoped sample lay within the range from 1.3 W m?1 K?1 at RT to a minimal value of 1.2 W m?1 K?1 at 600 K. All doped samples showed improved thermoelectric behavior at 600 K compared with the undoped sample with 16 nm particle size. Cobalt doping modified the p-type semiconducting behavior to n-type and increased the thermal conductivity (2.1 W m?1 K?1) but improved the electrical conductivity (41 S cm?1) and Seebeck coefficient (-129 μV K?1). Isovalent selenium doping led to a slightly higher thermal conductivity (1.7 W m?1 K?1) as well as to an improved electrical conductivity (26 S cm?1) and Seebeck coefficient (110 μV K?1). The ZT value of FeS2 was increased by a factor of five by Co doping and by a factor of three by Se doping.  相似文献   

7.
A new technique for measuring thermal conductivity with significantly improved accuracy is presented. By using the Peltier effect to counterbalance an imposed temperature difference, a completely isothermal, steady-state condition can be obtained across a sample. In this condition, extraneous parasitic heat flows that would otherwise cause error can be eliminated entirely. The technique is used to determine the thermal conductivity of p-type and n-type samples of (Bi,Sb)2(Te,Se)3 materials, and thermal conductivity values of 1.47?W/m?K and 1.48?W/m?K are obtained respectively. To validate this technique, those samples were assembled into a Peltier cooling device. The agreement between the Seebeck coefficient measured individually and from the assembled device were within 0.5%, and the corresponding thermal conductivity was consistent with the individual measurements with less than 2% error.  相似文献   

8.
The thermoelectric performance of Fe2VAl-based alloys was improved by using the effects of (a) heavy element substitution and (b) off-stoichiometric (Fe/V ≠ 2) composition. The former method led to a significant reduction of lattice thermal conductivity, whereas the latter to an evolution of the Seebeck coefficient. As a result of sample preparation, we confirmed that the dimensionless figure of merit with n-type behavior was increased up to 0.25 at 420 K for the sample obtained at the optimized composition of Fe1.98V0.97Ta0.05Al0.9Si0.1. Electronic structure calculations revealed that the increase of the Seebeck coefficient observed for Fe-poor samples was caused by a reduction of the density of states near the chemical potential.  相似文献   

9.
p-Type Yb z Fe4?x Co x Sb12 skutterudites were prepared by encapsulated melting and hot pressing, and the filling and doping (charge compensation) effects on the transport and thermoelectric properties were examined. The electrical conductivity of all specimens decreased slightly with increasing temperature, indicating that they were in a degenerate state due to high carrier concentrations of 1020 cm?3 to 1021 cm?3. The Hall and Seebeck coefficients exhibited positive signs, indicating that the majority carriers are holes (p-type). The Seebeck coefficient increased with increasing temperature to maximum values of 100 μV/K to 150 μV/K at 823 K. The electrical and thermal conductivities were reduced by substitution of Co for Fe, which was responsible for the decreased carrier concentration. Overall, the Yb-filled Fe-rich skutterudites showed better thermoelectric performance than the Yb-filled Co-rich skutterudites.  相似文献   

10.
Half-Heulser thermoelectric materials ZrNi1?y Co y Sn (y?=?0, 0.02, 0.04, 0.08, 0.12) were prepared by a time-efficient levitation melting and spark plasma sintering procedure. X-ray diffraction analysis and electron probe microanalysis showed that single-phase half-Heusler compounds without compositional segregation have been obtained. The effects of Co doping on the electrical conductivity, Seebeck coefficient, and thermal conductivity of ZrNiSn-based half-Heusler alloys have been investigated from 300?K to 900?K. The Seebeck coefficient displayed a change from negative to positive values above nominal Co doping content of y?=?0.02, indicating a transition in the conduction behavior from n-type to p-type. The maximum dimensionless figure of merit ZT of undoped ZrNiSn sample reached 0.5 at 870?K.  相似文献   

11.
We present results on the electrical resistivity, Seebeck coefficient, and thermal conductivity for the Heusler alloys Fe2VAl1–x Si x and Fe2VAl1–x Sn x synthesized using standard arc-melting techniques. While alloys with x = 0 are p-type, upon substitution of Si or Sn for Al the alloys can be made n-type with optimized sample compositions exhibiting thermoelectric power factors in excess of that of bismuth telluride near room temperature. The lattice thermal conductivity κ L of these alloys is too large to produce a high figure of merit; the prospects for and initial attempts at lowering κ L are discussed.  相似文献   

12.
In this study, we investigated the impact of the Ce filling fraction on the thermoelectric properties of p-type filled skutterudites Ce y Fe3CoSb12 (y = 0.6 to 1.0). The electrical conductivity decreases gradually with increasing y, while the Seebeck coefficient displays an opposite variation tendency, consistent with the expected electron donor role of the Ce filler in this compound. The overall power factors are invariable among all the samples. Alteration of the Ce filling fraction exerts little influence on the phonon transport, but the total thermal conductivity markedly declined with increasing y due to the reduced contribution to heat transfer from carriers. As a consequence, the maximum thermoelectric figure of merit ZT reaches ~0.8 for the sample with y = 0.9, comparable to that of pure Fe-based skutterudite CeFe4Sb12; more importantly, the former possesses a much larger average ZT between 300 K and 800 K than the latter, showing superior potential for use in intermediate-temperature thermoelectric power generation applications. Further enhancement of ZT in p-type Fe3CoSb12-based skutterudites could be realized via nanostructuring or a multiple-filling approach.  相似文献   

13.
Ca z Co4−x (Fe/Mn) x Sb12 skutterudites were prepared by mechanical alloying and hot pressing. The phases of mechanically alloyed powders were identified as γ-CoSb2 and Sb, but they were transformed to δ-CoSb3 by annealing at 873 K for 100 h. All specimens had a positive Hall coefficient and Seebeck coefficient, indicating p-type conduction by holes as majority carriers. For the binary CoSb3, the electrical conductivity behaved like a nondegenerate semiconductor, but Ca-filled and Fe/Mn-doped CoSb3 showed a temperature dependence of a degenerate semiconductor. While the Seebeck coefficient of intrinsic CoSb3 increased with temperature and reached a maximum at 623 K, the Seebeck coefficient increased with increasing temperature for the Ca-filled and Fe/Mn-doped specimens. Relatively low thermal conductivity was obtained because fine particles prepared by mechanical alloying lead to phonon scattering. The thermal conductivity was reduced by Ca filling and Fe/Mn doping. The electronic thermal conductivity was increased by Fe/Mn doping, but the lattice thermal conductivity was decreased by Ca filling. Reasonable thermoelectric figure-of-merit values were obtained for Ca-filled Co-rich p-type skutterudites.  相似文献   

14.
We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4–5–W–m?1–K?1. Both compounds have narrow-bandgaps of approximately 0.3–eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350–<–|S 373K|–<–550–μV–K?1 for undoped samples, it should be possible to obtain highly efficient thermoelectric materials both by adjusting the carrier concentration and by reducing the thermal conductivity. Here, we report the effects of doping on the thermoelectric properties of FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.  相似文献   

15.
To gain deep insight into the mechanism of phonon scattering at grain boundaries, we investigated the boundary thermal resistance by using picosecond pulsed-laser time-domain thermoreflectance for epitaxially grown W/Fe2VAl/W films. By using radio-frequency magnetron sputtering, we prepared a series of the three-layer films whose Fe2VAl thickness ranged from 1 nm to 37 nm. The fine oscillation of reflectivity associated with the top W layer clearly appeared in synchrotron x-ray reflectivity measurements, indicating a less obvious mixture of elements at the boundary. The areal heat diffusion time, obtained from the time-domain thermoreflectance signal in the rear-heating front-detection configuration, reduced rapidly in samples whose Fe2VAl layer was thinner than 15 nm. The ~ 10% mismatch in lattice constant between Fe2VAl and W naturally produced the randomly distributed lattice stress near the boundary, causing an effective increase of boundary thermal resistance in the thick samples, but the stress became homogeneous in the thinner layers, which reduced the scattering probability of phonons.  相似文献   

16.
Indium-selenium-based compounds have received much attention as thermoelectric materials since a high thermoelectric figure of merit of 1.48 at 705?K was observed in In4Se2.35. In this study, four different compositions of indium-selenium compounds, In2Se3, InSe, In4Se3, and In4Se2.35, were prepared by mechanical alloying followed by spark plasma sintering. Their thermoelectric properties such as electrical resistivity, Seebeck coefficient, and thermal conductivity were measured in the temperature range of 300?K to 673?K. All the In-Se compounds comprised nanoscaled structures and exhibited n-type conductivity with Seebeck coefficients ranging from ?159???V?K?1 to ?568???V?K?1 at room temperature.  相似文献   

17.
Magnesium silicide (Mg2Si) thick films with (110) orientation were fabricated on (001) sapphire substrate using radiofrequency magnetron sputtering. Stoichiometric Mg2Si films with composition Si/(Mg + Si) = 0.33 were achieved over a range of vacuum from 10 mTorr to 140 mTorr and 300°C. On postannealing the film at 500°C, the out-of-plane lattice parameter shifted to lower values and the electrical conductivity increased by two orders of magnitude. A room-temperature Seebeck coefficient of 517 μV K?1 was observed and found to decrease with increasing temperature; the Seebeck coefficient remained at a constant positive value of 212 μV K?1 at 500°C. This can be related to the possibility of p-type conduction in this temperature range.  相似文献   

18.
By multifilling with La, Ba, Ga, Ti, Yb, Ca, Al, and In, the dimensionless figure of merit ZT of filled skutterudites has been improved in this work. ZT reached 0.75 for p-type (La,Ba,Ga,Ti) x (Fe,Co)4Sb12 (x = 0.8 to 1.0) and 1.0 for n-type (Yb,Ca,Al,Ga,In) y (Co,Fe)4Sb12 (y = 0.7 to 0.9). After annealing at 873 K for 180 h, 300 h, 710 h, 1000 h, and 5000 h in vacuum, the Seebeck coefficient S and the electrical resistivity ρ of the samples increased while the thermal conductivity λ decreased with increasing annealing time. As a result, the ZT values of both p- and n-type skutterudites remained unchanged or were slightly improved, demonstrating the excellent thermal stability of these skutterudites.  相似文献   

19.
The thermoelectric figure-of-merit (zT) of p-type MNiSn (M = Ti, Zr, or Hf) half-Heusler compounds is lower than their n-type counterparts due to the presence of a donor in-gap state caused by Ni occupying tetrahedral interstitials. While ZrNiSn and TiNiSn, have been extensively studied, HfNiSn remains unexplored. Herein, this study reports an improved thermoelectric property in p-type HfNi1−xCoxSn. By doping 5 at% Co at the Ni sites, the Seebeck coefficient becomes reaching a peak value exceeding 200 µV K−1 that breaks the record of previous reports. A maximum power factor of ≈2.2 mW m−1 K−2 at 973 K is achieved by optimizing the carrier concentration. The enhanced p-type transport is ascribed to the reduced content of Ni defects, supported by first principle calculations and diffraction pattern refinement. Concomitantly, Co doping also softens the lattice and scatters phonons, resulting in a minimum lattice thermal conductivity of ≈1.8 W m−1 K−1. This leads to a peak zT of 0.55 at 973 K is realized, surpassing the best performing p-type MNiSn by 100%. This approach offers a new method to manipulate the intrinsic atomic disorder in half-Heusler materials, facilitating further optimization of their electronic and thermal properties.  相似文献   

20.
The structure and electrical and optical properties of heterostructures formed on the surface of single-crystal silicon wafers as a result of the heat treatment and pulsed photon treatment of Ti films in oxygen, air, and nitrogen are investigated. It is shown that a TiO2/Ti5Si3/p-Si heterostructure is formed upon heat treatment in air, whereas a TiO2/TiSi2/p-Si heterostructure is formed upon photon treatment. It is established that rutile films with pronounced n-type conductivity are formed as a result of the heat treatment of Ni-doped Ti films in oxygen. Rutile films with p-type conductivity are formed upon the thermal annealing of Ti films in air with subsequent photon treatment in nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号