首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以海蜇加工下脚料为原料提取胶原蛋白,以还原力(RP)和水解度(DH)为指标,采用响应面法研究了酶解温度、酶解时间、pH、料液比、酶添加量对还原力和水解度的影响,得到最佳酶解胶原蛋白的工艺条件;并进一步与复合酶水解工艺进行比较,确定海蜇胶原蛋白肽的最优制备工艺。结果表明:胰蛋白酶的最优酶解条件为:温度44℃、pH8.5、料液比0.50 g/mL、酶添加量3.0%和酶解时间4 h;风味蛋白酶的最优酶解条件为:温度44℃、pH7.5、料液比0.56 g/mL、酶添加量4.0%和酶解时间4 h;进一步进行复合酶实验,结果表明采用风味蛋白酶和胰蛋白酶分别在其最适条件下进行先后酶解获得的酶解液的DH和RP最高,分别为(71.56%±0.0076%)和(0.341±0.0101)。  相似文献   

2.
黑曲霉(Aspergillus niger)产β-葡聚糖酶固态发酵优化的研究   总被引:8,自引:0,他引:8  
研究在黑曲霉 (Asp niger) FSN6 5固态发酵中碳氮比、无机氮源、大麦粉添加、水分比例、初始 pH、接种量、培养温度及发酵时间对β 葡聚糖酶酶产量的影响。结果表明 ,培养基中C/N(以麸皮与豆饼粉比例计 )为 8∶1;最佳无机氮源为NH4 NO3;大麦添加对产酶没有明显的诱导作用 ;培养基中最适水分比例为 1∶1;最适发酵条件 :初始发酵pH为 6 0 ;最适接种量为每瓶 0 5mL孢子悬液 (孢子浓度为 4 5× 10 7/mL) ;最适的发酵温度为 33℃ ;在以上最适条件下固态培养 70h ,发酵产酶水平可达 14 16 49u/ g ,优化结果比初始设计提高了 2 6 %。对粗酶酶学特性研究表明 :该酶最适作用 pH为 5 0 ,最适作用温度为 75℃。  相似文献   

3.
以膨化米糠为主要原料,先经α-淀粉酶液化,再经糖化酶和蛋白酶同步酶解,改善米糠液中的营养成分。试验结果表明,α-淀粉酶水解最佳条件为酶用量1.5%,酶解温度为80 ℃,酶解时间为75 min,淀粉酶水解后还原糖含量达到0.657 1 g/100 mL。糖化酶和蛋白酶复合水解米糠,最适条件为pH4.5,糖化酶添加量0.2%,蛋白酶添加量2%,酶解温度60 ℃,酶解时间120 min,在此条件下,酶解液还原糖含量可达3.0 g/100 mL,氨基酸含量可达5.2 g/100 mL。  相似文献   

4.
以草鱼皮为原料,采用六种蛋白酶酶解,以DPPH自由基清除率和水解度为指标,筛选两种较优的酶,再通过响应面分别优化两种酶制备抗氧化酶解液的工艺条件,并在此基础上进行双酶酶解实验,确定酶解草鱼皮的最优工艺。结果表明:碱性蛋白酶酶解草鱼皮的最适条件为加酶量6.3%、料水比1∶40.6、温度51.3℃、时间115.1 min,此时清除率最高为54.98%。木瓜蛋白酶最适条件为加酶量4.6%、料水比1∶41.2、温度50.5℃、时间133.0 min,清除率最高为41.06%。采用分步酶解(先碱性蛋白酶后木瓜蛋白酶)得到的酶解液DPPH自由基清除能力最高为92.07%,明显优于单酶水解和混合酶解的效果。  相似文献   

5.
贻贝油膏多酶协同水解工艺研究   总被引:2,自引:0,他引:2  
采用酸性蛋白酶、中性蛋白酶和碱性蛋白酶对贻贝油膏生产中的酶解条件进行研究。探讨了酶解温度、酶解时间、酶添加量和酶解pH对原料水解度的影响。结果表明:酸性蛋白酶的最适作用条件为温度55℃、时间2h、添加量2.5%、pH 2.5;中性蛋白酶为温度50℃、时间3h、添加量2.5%、pH 7.5;碱性蛋白酶为温度50℃、时间3h、添加量1.5%、pH 8.5。原料经三种酶协同水解后,水解度可以达到71.7%。  相似文献   

6.
以胰蛋白酶和风味蛋白酶进行复配并深度酶解草鱼边角料,采用酶解温度、pH、液料比、酶添加量为因素,以游离氨基酸总量(Total free amino acids,∑FAA)为响应值,通过响应曲面实验优化草鱼边角料蛋白质水解工艺,以最大程度的提高水解液中的游离氨基酸含量,并分析在水解过程中酶解液中的氨基酸组成。实验结果表明,胰蛋白酶及风味蛋白酶对草鱼边角料有较好的水解作用,且当复合比例为3:1时,草鱼边角料蛋白质水解液中有最大的∑FAA;另外,酶解温度、pH、液料比、酶添加量对草鱼边角料的水解程度均有显著的(p<0.05)影响;优化实验得到,当温度50 ℃、pH为7.3、液料比为4.2:1、酶添加量为2.2%时、酶解时间为6 h时,水解液中有最大的∑FAA为(12.03±0.11) mg/mL,酶解液中共检测出17种游离氨基酸,不同氨基酸的含量随着酶解时间的延长呈明显的增加趋势,在酶解时间超过6 h后,游离氨基酸含量增加趋势明显减缓。因此,该工艺可以用于草鱼边角料蛋白质水解液的制备。  相似文献   

7.
本文以三氯乙酸可溶性氮(SN-TCA)的含量与水解度(DH)为测定指标,研究了中性蛋白酶、胰蛋白酶和木瓜蛋白酶复配后与风味蛋白酶分步酶解猪骨粉的工艺,优化了复合酶的最佳配比和酶解工艺参数。研究结果表明,第一步酶解三种酶的最佳配比为中性蛋白酶添加量5000 U/g、胰蛋白酶添加量4420 U/g和木瓜蛋白酶添加量3000 U/g,此时所得SN-TCA的最大含量为52.6%;复合酶最优的酶解工艺参数为酶解温度43.4℃、酶解时间6 h、pH 7.6、加酶量0.31%、料液比1:5.4,此时SN-TCA含量最高为55.42%;第一步酶解液灭酶后进行第二步酶解,保持体系料液比和pH不变,加入风味酶酶解温度为45℃、酶解时间为4 h、加酶量为0.4%,此时酶解效果最好,水解度可达到13.71%。  相似文献   

8.
研究大米、大豆、枸杞为原料制备饮料的工艺。通过单因素、正交试验得到研究结果表明:α-淀粉酶酶解大米的最佳工艺条件为料水比1∶8(g/m L),加酶量0.3 g/100 g大米粉、酶解温度70℃、酶解时间80 min。饮料的最佳配方为大米豆浆汁(体积分数=3.5∶1)与枸杞汁(料水比1∶4)比例为6∶1(体积分数)、蔗糖添加量2%、柠檬酸添加量0.015%。复合稳定剂添加量为:分子蒸馏单甘酯0.05%、蔗糖酯0.03%、黄原胶0.10%、羧甲基纤维素钠0.05%。此工艺生产的饮料具有较好的品质及风味。  相似文献   

9.
益生菌发酵苦荞粉酶解液制备工艺研究   总被引:1,自引:0,他引:1  
采用中温α-淀粉酶对苦荞麦进行酶解,研究不同酶解时间、加酶量、温度、pH值和料水比等条件下酶解对苦荞粉中的还原糖含量的影响.结果表明:在水解时间2 h,水解温度55℃,加酶量150 U/g,pH值为5.5,料水比1:4(W:V)的条件下对苦荞粉酶解时,酶解后酶解液中的还原糖含量为8.18%,在此条件下苦荞粉酶解液中含有最高的还原糖值.  相似文献   

10.
通过比较碱性蛋白酶、中性蛋白酶、风味蛋白酶、复合蛋白酶和胰蛋白酶对虾加工副产品的酶解,确定风味蛋白酶作为最佳水解酶,并确定其起始pH值为6.5,考察了酶添加量、料液比、酶解时间和温度对虾油提取率的影响,确定最优工艺:酶添加量1.0g/100g,料液比1g:8mL,酶解时间2.5h,酶解温度50℃。  相似文献   

11.
Enzymes are used in the baking and milling industries to control dough properties and improve the quality of finished products. The role of enzymes in the baking process of an unleavened Indian flat bread, namely South Indian parotta, was studied. In this connection, comparisons have been made on the effects of different enzymes such as fungal α‐amylase (FA), glucose oxidase (GO), proteinase and xylanase on rheological characteristics and microstructure of parotta dough and its relation to the overall quality characteristics of baked parotta. Addition of GO increased, while FA, xylanase and proteinase decreased farinograph stability. Extensograph resistance to extension increased with GO or xylanase and decreased with FA or proteinase. The extensibility increased with FA, xylanase or proteinase and decreased with GO. The microstructure of parotta dough with different enzymes revealed that the use of proteinase improved the continuous gluten formation compared with the control and the other three enzymes, FA, xylanase and GO. This could be due to the proteinase enzyme breaking larger protein fibrils into smaller fibrils and thus enhancing the continuous gluten film formation. A similar observation was also noted in the microstructure of baked parotta layers. The microstructure of parotta with proteinase enzyme showed a continuous network of protein films compared with a cluster of protein films in parotta with GO. In the case of xylanase‐treated parotta, the starch granules were deformed completely and these deformed starch granules were found sticking to the protein films. In parottas prepared with GO and FA, only a few starch granules with faint outlines were visible. Generally speaking, the overall quality score of parotta decreased to 68 and 64 with the use of FA and, GO respectively, as against the control parotta score of 74. The score increased to 92 and 82 with the addition of proteinase and xylanase, respectively. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
Sorghum malt α‐amylase can compete with bacterial α‐amylase in industrial applications, if sufficiently stable and produced in a large enough quantity. Conditions for maximal α‐amylase production in sorghum malt and the physico‐chemical properties of the α‐amylase so produced are reported in this study. Sorghum grains were steeped in buffers with varying pH (4.0–8.0) for 24 h, at room temperature, and germinated for another 48 h to obtain the green malt. The buffer that induced the highest quantity of α‐amylase was chosen as the optimal pH and served as the medium for further steeping experiments conducted at different temperatures (10, 20, 30, 40, 50 and 60°C). The α‐amylase activity in the extract was determined in order to obtain the optimum temperature for α‐amylase induction at this particular pH. For the purpose of comparison, the α‐amylase produced at the optimum pH and temperature was purified to apparent homogeneity by a combination of ion‐exchange and size‐exclusion chromatography, and further characterized. Eight‐fold higher α‐amylase activity was induced in pH 6.5 buffer at 20°C compared with water, the traditional steeping medium. The Km and Vmax were estimated to be 1.092 ± 0.05 mg mL?1 and 3516 ± 1.981 units min?1, respectively. The activation energy of the purified amylase for starch hydrolysis was 6.2 kcal K?1 mol?1. Chlorides of calcium and manganese served as good activators, whereas CuSO4 inhibited the enzyme with a 42% loss in activity at 312 mm salt concentration. Copyright © 2012 The Institute of Brewing & Distilling  相似文献   

13.
以玉米芯和麸皮 ( 7∶3 )为碳源 ,(NH4) 2 SO4( 2 % )为氮源 ,3 0℃培养 72h ,发酵曲用蒸馏水3 0℃浸提 1h ,得到 β 1,4 木聚糖酶活力高 ,β 木糖苷酶活力低的粗酶液。β 1,4 木聚糖酶和 β 木糖苷酶的最适作用温度分别为 5 0℃和 60℃ ,最适作用pH分别为 4 8和 4 0 ,β 1,4 木聚糖酶在pH5 0~ 10 6范围内稳定 ,β 木糖苷酶在 pH 3 0~ 3 0范围内稳定。β 木糖苷酶的热稳定性比 β 1,4 木聚糖酶高  相似文献   

14.
Abalone is one of the most valuable seafood products and the quality of ready-to-eat abalone products could be improved through tenderization treatments prior to a fully cooking process. In this study, a tenderization process (80 °C for 2 h) was applied to improve the quality properties of baked abalone muscle for the developing of ready-to-eat products. The quality properties of baked abalone (150–210 °C, 10–30 min) with and without pre-tenderization treatment prior to baking were evaluated through sensory evaluation, textural analysis and Hunter Lab colorimeter. In addition, amounts of sugars and α-dicarbonyl compounds in these products were determined via HPLC analyses. The baking condition at 180 °C for 20 min combined with pre-tenderization resulted in an optimal product. The baked abalone with pre-tenderization had better textural properties (hardness, 1031.12?±?101.67; springiness, 0.96?±?0.02; chewiness, 817.13?±?113.43; shear, 2843.92?±?35.67), sensory scores (30.1?±?2.9) and color (25.28?±?1.21) as compared to the baked abalone without pre-tenderization (hardness, 1990.91?±?252.35; springiness, 0.87?±?0.01; chewiness, 1164.43?±?195.64; shear, 3910.79?±?302.12; sensory score, 17.4?±?1.0; color, 15.91?±?0.74). The reducing sugar analysis indicated the presence of ribose and glucose in the baked abalone. In addition, the formation of α-dicarbonyl compounds (degraded from reducing sugars) including glucosone, 3-deoxyglucosone, glyoxal, methylglyoxal, and diacetyl were significantly promoted by the tenderization process in the baked abalone muscle. And the tenderization treatment led to an average of 218% increase in α-dicarbonyl compounds in the baked abalone muscle. The promotion of the formation of α-dicarbonyl compounds by the tenderization treatment contributed to the accumulation of pigments in the final baked products and led to desirable color.  相似文献   

15.
木聚糖酶法制备水溶性玉米膳食纤维的工艺研究   总被引:2,自引:0,他引:2  
利用木聚糖酶对脂肪酶、淀粉酶、蛋白酶预处理后的玉米种皮进行酶解,制备水溶性膳食纤维,并对所得膳食纤维进行气相色谱分析。木聚糖酶酶解最佳工艺条件为:酶解时间40min、加酶量1.0ml/g、酶解温度45℃、pH4.8;酶法得到的可溶性膳食纤维的成分主要有木糖、阿拉伯糖、半乳糖和葡萄糖。  相似文献   

16.
Proso millet is a gluten‐free cereal and is therefore considered a suitable raw material for the manufacturing of foods and beverages for people suffering from celiac disease. The objective of this study was to develop an optimal mashing procedure for 100% proso millet malt with a specific emphasis on high amylolytic activity. Therefore, the influence of temperature and pH on the amylolytic enzyme activity during mashing was investigated. Size exclusion chromatography was used to extract different amylolytic enzyme fractions from proso millet malt. These enzymes were added into a pH‐adjusted, cold water extract of proso millet malt and an isothermal mashing procedure was applied. The temperatures and pH optima for amylolytic enzyme activities were determined. The α‐amylase enzyme showed highest activity at a temperature of 60°C and at pH 5.0, whereas the β‐amylase activity was optimum at 40°C and pH 5.3. The limit dextrinase enzyme reached maximum activity at 50°C and pH 5.3. In the subsequent mashing regimen, the mash was separated and 40% was held for 10 min at 68°C to achieve gelatinisation. The next step in the mashing procedure was the mixture of the part mashes. The combined mash was then subjected to an infusion mashing regimen, taking the temperature optima of the various amylolytic enzymes into account. It was possible to obtain full saccharification of the wort with this mashing regimen. The analytical data obtained with the optimised proso millet mash were comparable to barley wort, which served as a control.  相似文献   

17.
利用单因素和正交试验对实验室选育的黑曲霉XZ-3S(Aspergillus niger XZ-3S)菌株的发酵条件进行了研究.得到试验因素的产酶条件为天然原料麸皮与玉米芯的比例为5∶3,接种量1.0%(孢子悬液,孢子浓度5×107个/mL),料水比例1∶1.7,培养基初始pH值为7.5,培养温度28℃、培养时间65h,其间翻曲2~3次,在上述条件下木聚糖酶的活力可达23612.38IU/g干曲.酶学性质初步研究显示,酶的最适反应温度和pH值分别为50℃和5.0,低于50℃、pH3.0~8.0酶稳定.  相似文献   

18.
以青稞为原料,通过单因素试验,研究了浸泡温度、浸泡时间、焙烤温度、焙烤时间对青稞糊化率的影响,并以青稞糊化率为响应值,采用响应面法对青稞焙烤工艺进行了优化。结果表明,青稞焙烤工艺的最佳条件为浸泡温度35 ℃,浸泡时间3.5 h,焙烤温度268 ℃,焙烤时间12 min。在此优化条件下,焙烤青稞糊化率最高可达93.18%。焙烤后的青稞具有独特的香味,可用为酿酒或其他加工食品的原料。  相似文献   

19.
张镜  李炜东  肖琼娜 《食品科学》2010,31(23):294-299
PS0312 菌株是具有特殊生物学特性的青霉菌株。以三角瓶固体培养研究不同条件与菌株产淀粉酶的关系,以及温度与pH 值对酶活力的影响。结果表明:PS0312 菌株以麸皮30.04%、大豆饼粉3.70%、谷壳3.70% 及55.56% 蒸馏水组成的培养基固体发酵湿麸曲淀粉酶产量最高。单因子试验结果表明:以培养基pH3、108 个/mL的种子液接种量1.85%、培养温度28℃、培养时间96h 产淀粉酶量最大。PS0312 菌株产淀粉酶在pH2.0~10.0 内具较高活性,酶活大小与pH 值的关系成双峰形;pH3 的条件下酶活性最高,相对酶活100%;pH9 的条件下酶活次之,相对酶活84.98%。酶反应最适温度为60℃,90℃条件下相对酶活为39.06%。研究表明:PS0312 菌株发酵产淀粉酶是一种在强酸、强碱条件下都具有较高的酶活性和耐高温的特殊的酸性、中温淀粉酶,可在较宽的温度与pH 值范围下应用。  相似文献   

20.
The effects on wort quality when mashing with unmalted sorghum (0–100%) and malted barley (100–0%) in combination with industrial enzymes were evaluated. A mashing program with temperature stands at 50°C, 95°C and 60°C was used. Different combinations of commercial enzymes were evaluated. A heat stable α‐amylase was found to be essential for efficient saccharification. The inclusion of a fungal α‐amylase in mashes with a high sorghum content improved filtration rates to that of 100% malted barley mashes. Addition of a bacterial protease increased the amount of nitrogen solubilisation and peptide degradation. An increase of the relative proportion of sorghum in the grist resulted in decreases in wort filtration, colour, viscosity, attenuation limit, free amino nitrogen, high molecular weight nitrogen, and a corresponding increase in pH (p < 0.01). Overall the addition of malted barley in small proportions to unmalted sorghum mashes together with commercial enzymes was found to improve the potential for brewing a high quality lager beer from unmalted sorghum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号