首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleolar proteins Gar1p and fibrillarin possess a typical nucleolar glycine/arginine-rich domain and belong to ribonucleoprotein particles. Both proteins are essential for yeast cell growth and are required for pre-rRNA processing. In addition, Gar1p is involved in pre-rRNA pseudouridylation, whereas fibrillarin is required for pre-rRNA methylation. Gar1p and fibrillarin are each associated with a different subset of the small nucleolar RNAs (snoRNAs). Gar1p is co-immunoprecipitated with the H/ACA family of snoRNAs, whereas fibrillarin is co-immunoprecipitated with the C/D family. However, attempts to demonstrate direct interactions between fibrillarin and snoRNAs have failed, and such interactions between Gar1p and the H/ACA snoRNAs had not yet been reported. Among the H/ACA snoRNAs associated with Gar1p, one can distinguish a large group of snoRNAs that are not essential in yeast and serve as guides for pseudouridine synthesis onto the pre-rRNA molecule. In contrast, the two snoRNAs snR10 and snR30 are required for normal cell growth and for pre-rRNA cleavage. We show here that Gar1p interacts in vitro directly and specifically with these two snoRNAs. Deletion analysis of Gar1p indicates that a major RNA binding element, which is extremely well conserved throughout evolution, lies in the middle of the protein. However, this domain alone binds poorly to the target RNAs and an accessory domain is required to restore efficient binding. The accessory domain can be either one of the glycine/arginine-rich domains or a second element of the core of the protein that is highly conserved between different species.  相似文献   

2.
Suggested method for calculation of solvent accessibility of tryptophan and tyrosine residues in water-organic mixtures is based on evaluation of second order derivatives of UV spectra. Second order derivative of the spectrum enable differentiation between direct effects of the organic solvent on spectral characteristics of exposed aromatic amino acid residues and the effect of the organic solvent on protein conformation. The method is suitable for calculation of exposition of tryptophan in water-organic mixtures if the content of tyrosine amino acid residues in protein does not exceed the content of tryptophan. Similar method of calculation of exposition of tyrosine residues can be used in proteins when the content of tyrosine is at least 5-fold higher than the content of tryptophan. For example, solvent accessibility of tryptophan residues of chymotrypsin is calculated in the presence of various organic solvents including ethanol, dioxane, and dimethyl formamide.  相似文献   

3.
A new repeating amino acid motif, which we called WWP, was found in several proteins of yeast, nematod or vertebrate origin. Among these are dystrophin, the product of the Duchenne muscular dystrophy locus, a protein (YAP65) which associates in vitro with the Src homology domain 3 (SH3) of the Yes proto-oncogene product, and a human putative GTPase-activating protein. As is the case for proteins which contain the SH2, SH3 and PH domains, at least some of the WWP-containing proteins appear to be signaling or cytoskeletal proteins, associated with plasma or organellar membranes, and specific protein-protein contacts are likely to be crucial to their function.  相似文献   

4.
We defined the epitopes recognized by three influenza A virus-specific, H-2Kd-restricted CD8(+) cytotoxic T-lymphocyte (CTL) clones: H1-specific clone A-12, H2-specific clone F-4, and H1- and H2-cross-reactive clone B7-B7. The A-12 and B7-B7 clones recognized the same peptide, which comprises amino acids 533 to 541 (IYSTVASSL) of A/PR/8 hemagglutinin (HA). The F-4 and B7-B7 clones both recognized the peptide which comprise amino acids 529 to 537 (IYATVAGSL) of A/Jap HA. Amino acids 533 to 541 of A/PR/8 HA are compatible with amino acids 529 to 537 of A/Jap HA. Amino acid S at positions 3 and 7 was responsible for recognition by H1-specific clone A-12, while amino acid G at position 7 was responsible for recognition by H2-specific clone F-4. Two conserved amino acids, T at position 4 and A at position 6, were responsible for recognition by H1-, and H2-cross-reactive clone B7-B7. These results indicate that a single nine-amino-acid region is recognized by HA-specific CTL clones of three different subtype specificities and that the amino acids responsible for the recognition by the CTL clones are different.  相似文献   

5.
Ras and Raf-1 are key proteins involved in the transmission of developmental and proliferative signals generated by receptor and nonreceptor tyrosine kinases. Genetic and biochemical studies demonstrate that Raf-1 functions downstream of Ras in many signaling pathways. Although Raf-1 directly associates with GTP-bound Ras, an effect of this interaction on Raf-1 activity in vivo has not been established. To examine the biological consequence of the Ras/Raf-1 interaction in vivo, we set out to identify key residues of Raf-1 required for Ras binding. In this report, we show that a single amino acid mutation in Raf-1 (Arg89 to Leu) disrupted the interaction with Ras in vitro and in the yeast two-hybrid system. This mutation prevented Ras-mediated but not tyrosine kinase-mediated enzymatic activation of Raf-1 in the baculovirus/Sf9 expression system. Furthermore, kinase-defective Raf-1 proteins containing the Arg89-->Leu mutation were no longer dominant-inhibitory or capable of blocking Ras-mediated signal transduction in Xenopus laevis oocytes. These results demonstrate that the association of Raf-1 and Ras modulates both the kinase activity and the biological function of Raf-1 and identify Arg89 as a critical residue involved in this interaction. In addition, the finding that tyrosine kinases can stimulate the enzymatic activity of Raf-1 proteins containing a mutation at the Ras-interaction site suggests that Raf-1 can be activated by Ras-independent pathways.  相似文献   

6.
Most eukaryotic mRNAs possess a 5' cap and a 3' poly(A) tail, both of which are required for efficient translation. In yeast and plants, binding of eIF4G to poly(A)-binding protein (PABP) was implicated in poly(A)-dependent translation. In mammals, however, there has been no evidence that eIF4G binds PABP. Using 5' rapid amplification of cDNA, we have extended the known human eIF4GI open reading frame from the N-terminus by 156 amino acids. Co-immunoprecipitation experiments showed that the extended eIF4GI binds PABP, while the N-terminally truncated original eIF4GI cannot. Deletion analysis identified a 29 amino acid sequence in the new N-terminal region as the PABP-binding site. The 29 amino acid stretch is almost identical in eIF4GI and eIF4GII, and the full-length eIF4GII also binds PABP. As previously shown for yeast, human eIF4G binds to a fragment composed of RRM1 and RRM2 of PABP. In an in vitro translation system, an N-terminal fragment which includes the PABP-binding site inhibits poly(A)-dependent translation, but has no effect on translation of a deadenylated mRNA. These results indicate that, in addition to a recently identified mammalian PABP-binding protein, PAIP-1, eIF4G binds PABP and probably functions in poly(A)-dependent translation in mammalian cells.  相似文献   

7.
Adenovirus E1A proteins immortalize primary animal cells and cooperate with several other oncogenes in oncogenic transformation. These activities are primarily determined by the N-terminal half (exon 1) of E1A. Although the C-terminal half (exon 2) is also essential for some of these activities, it is dispensable for cooperative transformation with the activated T24 ras oncogene. Exon 2 negatively modulates in vitro cooperative transformation with T24 ras as well as the tumorigenic and metastatic potentials of transformed cells. A short C-terminal sequence of E1A governs the oncogenesis-restraining activity of exon 2. This region of E1A binds with a cellular phosphoprotein, CtBP, through a 5-amino acid motif, PLDLS, conserved among the E1A proteins of human adenoviruses. To understand the mechanism by which interaction between E1A and CtBP results in tumorigenesis-restraining activity, we searched for cellular proteins that complex with CtBP. Here, we report the cloning and characterization of a 125-kDa protein, CtIP, that binds with CtBP through the PLDLS motif. E1A exon 2 peptides that contain the PLDLS motif disrupt the CtBP-CtIP complex. Our results suggest that the tumorigenesis-restraining activity of E1A exon 2 may be related to the disruption of the CtBP-CtIP complex through the PLDLS motif.  相似文献   

8.
Recent evidence indicates that several members of the Na+-coupled transporter family are regulated, and this regulation in part occurs by redistribution of transporters between intracellular locations and the plasma membrane. We elucidate components of this process for both wild-type and mutant GABA transporters (GAT1) expressed in Xenopus oocytes using a combination of uptake assays, immunoblots, and electrophysiological measurements of membrane capacitance, transport-associated currents, and GAT1-specific charge movements. At low GAT1 expression levels, activators of protein kinase C (PKC) induce redistribution of GAT1 from intracellular vesicles to the plasma membrane; at higher GAT1 expression levels, activators of PKC fail to induce this redistribution. However, coinjection of total rat brain mRNA with GAT1 permits PKC-mediated modulation at high transporter expression levels. This effect of brain mRNA on modulation is mimicked by coinjection of syntaxin 1a mRNA and is eliminated by injecting synaptophysin or syntaxin antisense oligonucleotides. Additionally, botulinum toxins, which inactivate proteins involved in vesicle release and recycling, reduce basal GAT1 expression and prevent PKC-induced translocation. Mutant GAT1 proteins, in which most or all of a leucine heptad repeat sequence was removed, display altered basal distribution and lack susceptibility to modulation by PKC, delineating one region of GAT1 necessary for its targeting. Thus, functional regulation of GAT1 in oocytes occurs via components common to transporters and to trafficking in both neural and non-neural cells, and suggests a relationship between factors that control neurotransmitter secretion and the components necessary for neurotransmitter uptake.  相似文献   

9.
The general amino acid permease, Gap1, of Saccharomyces cerevisiae is very active in cells grown on proline as the sole nitrogen source. Adding NH4+ to the medium triggers inactivation and degradation of the permease via a regulatory process involving Npi1p/Rsp5p, a ubiquitin-protein ligase. In this study, we describe several mutations affecting the C-terminal region of Gap1p that render the permease resistant to NH4(+)-induced inactivation. An in vivo isolated mutation (gap1pgr) causes a single Glu-->Lys substitution in an amino acid context similar to the DXKSS sequence involved in ubiquitination and endocytosis of the yeast alpha-factor receptor, Ste2p. Another replacement, substitution of two alanines for a di-leucine motif, likewise protects the Gap1 permease against NH4(+)-induced inactivation. In mammalian cells, such a motif is involved in the internalization of several cell-surface proteins. These data provide the first indication that a di-leucine motif influences the function of a plasma membrane protein in yeast. Mutagenesis of a putative phosphorylation site upstream from the di-leucine motif altered neither the activity nor the regulation of the permease. In contrast, deletion of the last eleven amino acids of Gap1p, a region conserved in other amino acid permeases, conferred resistance to NH4+ inactivation. Although the C-terminal region of Gap1p plays an important role in nitrogen control of activity, it was not sufficient to confer this regulation to two NH4(+)-insensitive permeases, namely the arginine (Can1p) and uracil (Fur4p) permeases.  相似文献   

10.
Extracellular lysophosphatidic acid (LPA) produces diverse cellular responses in many cell types. Recent reports of several molecularly distinct G protein-coupled receptors have raised the possibility that the responses to LPA stimulation could be mediated by the combination of several uni-functional receptors. To address this issue, we analyzed one receptor encoded by ventricular zone gene-1 (vzg-1) (also referred to as lpA1/edg-2) by using heterologous expression in a neuronal and nonneuronal cell line. VZG-1 expression was necessary and sufficient in mediating multiple effects of LPA: [3H]-LPA binding, G protein activation, stress fiber formation, neurite retraction, serum response element activation, and increased DNA synthesis. These results demonstrate that a single receptor, encoded by vzg-1, can activate multiple LPA-dependent responses in cells from distinct tissue lineages.  相似文献   

11.
Partial amino acid sequences of a soluble protoporphyrinogen-oxidizing enzyme (PPO) purified from tobacco cultured cells were identified. The sequences of two regions of the soluble PPO corresponded to the acid/base catalysis and heme binding regions of plant peroxidases. Anti-soluble PPO IgG cross-reacted with these plant peroxidases. Thus, the soluble PPO seems to be a kind of peroxidase.  相似文献   

12.
Application of 1H 2D NMR methods to solubilized membrane proteins and peptides has up to now required the use of selectively deuterated detergents. The unavailability of any of the common biochemical detergents in deuterated form has therefore limited to some extent the scope of this approach. Here a 1H NMR method is described which allows structure determination of membrane peptides and small membrane proteins by 1H 2D NMR in any type of non-deuterated detergent. The approach is based on regioselective excitation of protein resonances with DANTE-Z or spin-pinging pulse trains. It is shown that regioselective excitation of the amide-aromatic region of solubilized membrane proteins and peptides leads to an almost complete suppression of the two orders of magnitude higher contribution of the protonated detergent to the 1H NMR spectrum. Consistently TOCSY, COSY and NOESY sequences incorporating such regioselective excitation in the F2 dimension yield protein 1H 2D NMR spectra of quality comparable to those obtained in deuterated detergents. Regioselective TOCSY and NOESY spectra display all through-bond and through-space correlations within amide-aromatic protons and between these protons and aliphatic and alpha-protons. Regioselective COSY spectra provide scalar coupling constants between amide and alpha-protons. Application of the method to the membrane-active peptide mastoparan X, solubilized in n-octylglucoside, yields complete sequence-specific assignments and extensive secondary structure-related spatial proximities and coupling constants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
BACKGROUND: There is general agreement that large numbers of histone H1 are necessary for maintenance of the higher order structure of chromatin in higher eukaryotes. The chicken H1 gene family comprises six members per haploid genome, the total copy number being 12, and they encode six H1 variants which are considerably different from each other in amino acid sequence. We recently established that in two chicken DT40 mutants (1/2delta110kb and delta57kb), which lack, respectively, one allele of the gene cluster of 110 kb carrying six H1 genes, plus 33 core histone genes, and two copies each of four of the six H1 genes included in an approximately 57 kb segment of the cluster, expression of the remaining H1 genes is increased, resulting in constant steady-state levels of total H1 mRNAs. These results gave rise to the simple questions of how many H1 genes and how many H1 variants, at minimum, are necessary for the viability of DT40 cells. RESULTS: We generated two DT40 mutants, delta10/12H1 and delta11/12H1, which are devoid, respectively, of two copies each of five H1 genes, and those plus a single copy of the last H1 gene, in addition to 17 core histone genes. Analyses involving a RNase protection assay, SDS-PAGE and acid-urea-PAGE revealed, not only that in the delta10/12H1 mutant the steady-state levels of total H1 mRNAs and the amounts of histone H1 were not changed, but also that in the delta11/12H1 mutant both were approximately one-half the normal levels, and the amounts of HMG proteins were increased about twofold. No alteration in the growth rate or global chromatin structure was observed in either mutant. On the other hand, the protein patterns on 2D-PAGE of the delta11/12H1 mutant were definitely distinct from those of the wild-type cell line. CONCLUSION: These results indicate not only that a lack of five of the six H1 variants causes changes in the protein patterns, but also that only a single copy of the H1 genes is enough for cell proliferation.  相似文献   

14.
The roles of the known tumor necrosis factor (TNF) receptors (TNFR-I and TNFR-II) and their associated signaling pathways in mediating the diverse actions of TNF remain incompletely defined. We have found that a proportion of exogenous TNF is delivered to mitochondria as well as to lysosomes. Using confocal and immunoelectron microscopy and Western blotting of subcellular fractions, we have identified a 60-kd protein in the inner mitochondrial membrane that is recognized by a monoclonal antibody to TNFR-II. In isolated mitochondria, this protein binds [125I]-TNF. This provides evidence of a mitochondrial binding protein for an extracellular ligand and demonstrates the presence of a pathway capable of delivering TNF from the cell surface to mitochondria. These findings suggest that TNF effects on cells may be due in part to a direct effect on mitochondria.  相似文献   

15.
We have identified a new human cDNA (y+L amino acid transporter-1 (y+LAT-1)) that induces system y+L transport activity with 4F2hc (the surface antigen 4F2 heavy chain) in oocytes. Human y+LAT-1 is a new member of a family of polytopic transmembrane proteins that are homologous to the yeast high affinity methionine permease MUP1. Other members of this family, the Xenopus laevis IU12 and the human KIAA0245 cDNAs, also co-express amino acid transport activity with 4F2hc in oocytes, with characteristics that are compatible with those of systems L and y+L, respectively. y+LAT-1 protein forms a approximately 135-kDa, disulfide bond-dependent heterodimer with 4F2hc in oocytes, which upon reduction results in two protein bands of approximately 85 kDa (i.e. 4F2hc) and approximately 40 kDa (y+LAT-1). Mutation of the human 4F2hc residue cysteine 109 (Cys-109) to serine abolishes the formation of this heterodimer and drastically reduces the co-expressed transport activity. These data suggest that y+LAT-1 and other members of this family are different 4F2 light chain subunits, which associated with 4F2hc, constitute different amino acid transporters. Human y+LAT-1 mRNA is expressed in kidney > peripheral blood leukocytes > lung > placenta = spleen > small intestine. The human y+LAT-1 gene localizes at chromosome 14q11.2 (17cR approximately 374 kb from D14S1350), within the lysinuric protein intolerance (LPI) locus (Lauteala, T., Sistonen, P. , Savontaus, M. L., Mykkanen, J., Simell, J., Lukkarinen, M., Simmell, O., and Aula, P. (1997) Am. J. Hum. Genet. 60, 1479-1486). LPI is an inherited autosomal disease characterized by a defective dibasic amino acid transport in kidney, intestine, and other tissues. The pattern of expression of human y+LAT-1, its co-expressed transport activity with 4F2hc, and its chromosomal location within the LPI locus, suggest y+LAT-1 as a candidate gene for LPI.  相似文献   

16.
17.
The second major cysteine loop of human immunodeficiency virus type 1 envelope glycoprotein gp120 contains 5 to 11 consensus N-linked glycosylation sites, which is disproportionately higher than the number of such sites found in other regions of gp120. Amino acid substitutions introduced at three of six N-linked glycosylation sites in this region of an infectious molecular clone, HXB2, resulted in severe impairment of virus infectivity. Isolation and genetic characterization of a revertant of this mutant revealed an isoleucine-for-valine substitution at position 84 in constant region 1 and an isoleucine-for-methionine substitution at position 434 in constant region 4. Further mutational analysis indicated that either isoleucine substitution was sufficient to confer the revertant phenotype. These findings demonstrate that V1/V2 not only functionally interacts with C4, as previously reported, but also interacts with C1. The observation that compensatory changes do not involve regeneration of N-linked glycosylation sites in the second major cysteine loop suggests that replication of human immunodeficiency virus type 1 in vitro is independent of the presence of a disproportionate number of N-linked glycosylation sites within this loop.  相似文献   

18.
19.
BACKGROUND: Circannual variations occur in several serotonergic parameters, including platelet serotonin uptake and platelet [3H]imipramine binding. METHODS: Binding of [3H]lysergic acid diethylamide ([3H]LSD) to platelet serotonin (5-HT)2A receptors and binding of [3H]paroxetine to platelet serotonin uptake sites were studied longitudinally for 1 year in 12 healthy volunteers. RESULTS: For [3H]LSD, the number of binding sites (Bmax) showed no significant seasonal variation (two-way analysis of variance), although Bmax was significantly higher during the months October through February than during the months April through August (32.6 vs. 29.8 fmol/mg protein; p = .015). For [3H]paroxetine, Bmax showed a significant seasonal variation (p = .003) with maximum in August (1322 fmol/mg protein) and minimum in February (1168 fmol/mg protein). The affinity constant (Kd) showed a significant seasonal variation for [3H]LSD binding (p = .046), but not for [3H]paroxetine binding. The seasonal fluctuations in [3H]LSD binding and in paroxetine binding tended to be inversely correlated for Bmax (r = -.70; p = .08) and were significantly negatively correlated for Kd (r = -.88; p = .009). CONCLUSIONS: The present study demonstrates a seasonal effect on platelet serotonin uptake site binding and indicates a possible seasonal effect on 5-HT2A receptor binding. The results imply that circannual fluctuations should be taken into account when these platelet serotonin markers are studied.  相似文献   

20.
The tritiated derivative of the potent 5-HT1A receptor agonist S-14506 ?1[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxynaphtyl)pipera zine? was tested for its capacity to selectively label the serotonin 5-HT1A receptors both in vitro in the rat and the mouse brain, and in vivo in the mouse. In vitro studies showed that the pharmacological profile and the distribution of [3H]S-14506 specific binding sites (Kd = 0.15 nM) in different brain regions matched perfectly those of the prototypical 5-HT1A receptor ligand [3H]8-OH-DPAT. However, in the three regions examined (hippocampus, septum, cerebral cortex), the density of [3H]S-14506 specific binding sites was significantly higher (+66-90%) than that found with [3H]8-OH-DPAT. Whereas the specific binding of [3H]8-OH-DPAT was markedly reduced by GTP and Gpp(NH)p and increased by Mn2+, that of [3H]S-14506 was essentially unaffected by these compounds. In addition, the alkylating agent N-ethylmaleimide was much less potent to inhibit the specific binding of [3H]S-14506 than that of [3H]8-OH-DPAT. Measurement of in vivo accumulation of tritium one hour after i.v. injection of [3H]S-14506 to mice revealed marked regional differences, with about 2.5 times more radioactivity in the hippocampus than in the cerebellum. Pretreatment with 5-HT1A receptor ligands prevented tritium accumulation in the hippocampus but not in the cerebellum. Autoradiograms from brain sections of injected mice confirmed the specific in vivo labeling of 5-HT1A receptors by [3H]S-14506, therefore suggesting further developments with derivatives of this molecule for positron emission tomography in vivo in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号